計畫編號：CCMP92-RD-004

行政院衛生署九十二年度科技研究發展計畫

中藥麥門冬湯與西藥併用治療氣喘之交互作用研究

委託研究報告

計畫委託機關：行政院衛生署中醫藥委員會

計畫主持人：游明謙

研究人員：游明謙、許清祥、吳承修

執行期間：92年1月23日至92年12月31日

＊＊ 本研究報告僅供參考，不代表本署意見 ＊＊
計畫編號：CCMP92-RD-004

各機關研究計畫基本資料庫之計畫編號：

行政院衛生署九十二年度科技研究發展計畫

中藥麥門冬湯與西藥併用治療氣喘之交互作用研究

委託研究報告

計畫委託機關：行政院衛生署中醫藥委員會
計畫主持人：游明謙
研究人員：游明謙、許清祥、吳承修

執行期間：92年1月23日至92年12月31日
行政院衛生署中醫藥委員會九十二年度
委託研究計畫成果報告

中藥麥門冬湯與西藥併用治療氣喘之交互作用研究

執行機構：中國醫藥大學附設醫院

計畫主持人：游明謙

研究人員：游明謙、許清祥、吳承修

執行期限：92年1月23日至92年12月31日

＊＊本研究報告僅供參考，不代表本會意見＊＊
中藥麥門冬湯與西藥併用治療氣喘之交互作用研究

計畫主持人：游明謙

執行單位：中國醫藥大學附設醫院

摘要

國人的求醫行為常常混合中西醫的治療模式，對常見的慢性病如過敏性氣喘的治療更是如此。然而盲目併用中西藥不但不能得到最佳的協同療效，甚至可能引發不良的副作用，或相互拮抗彼此的療效。因為近年來國內氣喘病的流行病學調查都顯示氣喘的罹病率和嚴重度正逐年增加，如目前學齡兒童即有近 10%患有氣喘。然而當前對如何結合中西藥治療氣喘的研究十分缺乏，尤其缺乏中西藥併用治療氣喘交互作用的研究資料，因此如何建立正確的中西醫結合治療氣喘的臨床指引，誠為當務之急。

本研究利用本實驗室已建立的塵螨過敏原特異性動物模型，先研究傳統中醫治療氣喘方劑麥門冬湯的作用機轉，中藥麥門冬湯可以降低氣喘小鼠血中 Der p specific IgE、改善肺功能及降低小鼠肺泡沖洗液中之細胞激素濃度，表示麥門冬湯在小鼠動物模式中可以治療氣喘。進一步建立 Wistar 大鼠動物中西藥交互作用的模式，評估常用西藥茶鹼與中藥麥門冬湯併用時的藥物動力學和藥效學機轉，希望了解併用中藥時是否改變茶鹼之代謝，由本實驗中發現，中西藥同時給藥會影響到藥物的吸收及代謝，中藥麥門冬湯可以延長西藥茶鹼作用的時間及血中的最高濃度，顯示中藥與西藥間有交互作用，尤其是中藥先餵食一個小時後，再給西藥茶鹼時，所造成的影響最大，尤其在前 3 小時候影響較大，因此必須同時注意是否也會造成茶鹼的中毒，然而超過 8 小時就沒有其它影響了，顯示若有足夠的間隔時間，中西藥的交互作用就會減低甚至消失，即使 2 倍濃度的中藥也沒有影響。

由本研究證實，中西藥間在存在交互作用的問題，是相當重要的課題，值得進一步進行更多的基礎及臨床試驗來加以證實。

關鍵詞：麥門冬湯、過敏性氣喘、交互作用、呼吸道過度收縮
The study of interaction between Mai Men Dong Tang and modern anti-asthma drug
Yu Min-Chien
China Medical University Hospital

ABSTRACT

Health seeking behavior in Taiwan is a mixture of traditional oriental medicine and modern medicine. Most of the patients take the modern medicine and traditional herbs at the same time nowadays. However, the interactions between modern medicine and traditional herbs are mostly unknown. We didn’t know whether the two different kinds of medicine have synergic effect or side effect while taken together. So, it becomes important to know the interaction between modern medicine and traditional herbs. The prevalence of children asthma was rising in the past decades. More and more patients receive both modern medicine and traditional herbs together. But it lack of study to clarify whether such kind of combination therapy provide better effect in treating asthma or increase side effect.

Our studies used Der-p5 sensitized balb/c mice to induce bronchial asthma and tried to find out the mechanism of tradition polypharmacy Mai Men Dong Tang (MMDT) in treating asthma. The results show MMDT could attenuated the serum Der-p specific IgE level, improve lung function and decrease cytokine concentration in the bronchial alveolar lavage fluid. Furthermore, we tried to set up the model of interaction between aminophylline and MMDT by Wistar rats.
The results show MMDT can increase the peak concentration of aminophylline especially given MMDP one hour before aminophylline. It suggests that MMDP will prolong the effect of aminophylline. However the effect last no longer than 8 hours. However, there is no interaction, even double the MMDP dose, if there is enough time-interval between aminophylline and MMDP. Our study suggests that there is interaction between MMDP and aminophylline. It is worth to have further study to set up the model between practice of modern medicine and traditional herbs.

Key Words: Mai-Men-Dong-Tang ; allergic asthma ; interaction ; bronchial hyperresponsiveness
壹、前言

國人的求醫行為常常混合中西醫的治療模式，對常見的慢性病如過敏性氣喘的治療更是如此。然而盲目併用中西藥不但不能得到最佳的協同療效，甚至可能引發不良的副作用，或相互拮抗彼此的療效。因為近年來國內氣喘病的流行病學多次調查都顯示氣喘的罹病率和嚴重度正逐年增加，如目前學齡兒童即有近 10%患有氣喘。然而當前對如何結合中西藥治療氣喘的研究十分缺乏，尤其缺乏中西平喘方藥交互作用的研究資料，因此如何建立正確的中西醫結合治療氣喘的臨床指引，誠為當務之急。

本研究希望利用本實驗室已建立的塵螨過敏原特異性動物模式，先研究傳統中醫治療氣喘方藥麥門冬湯的作用機轉，再進一步評估常用西藥茶鹼與中藥併用時的藥物動力學（包括吸收、排泄、分佈）和藥效學機轉，希望了解併用中藥時是否改變茶鹼之代謝，另外將研究與過敏性氣喘的若干免疫學指標和細胞內訊息傳導變化的研究，至少應包括觀察記錄過敏原特異性 IgE 的生成，呼吸道阻力的變化，發炎病理分析，發炎前導介質分析，嗜伊紅血球陽性細胞蛋白濃度變化和第一型、第二型 CD4 陽性 T 淋巴球釋放細胞間白素 4 和干擾素的關係，都將在本研究內獲得進一步的釐清。這些研究結果將有助於進一步應用於中西醫結合治療氣喘臨床試驗的設計，我們深信我們團隊有能力可以完成此一研究，對過敏性氣喘的中西醫結合治療作出重大貢獻。

2. 氣喘動物模式建立：

(1) 致敏反應（Sensitization）：

將塵螨抗原 Der p 5 與氮氧化鋁以 10 μg 比 4 mg 比例充分混合均勻後，以腹腔注射方式打入小白鼠體內來誘發過敏性免疫反應。首次免疫注射後隔三週再追加注射一次。二次免疫注射期間，由皮膚製劑治療小鼠。每批小鼠於進行第二次免疫後的隔天自其鼠尾動脈採血 50 μl，所採得的血液於室溫下靜置一小時後將之離心，取其血清冰存-80°C，再進行酵素連鎖免疫分析法 (ELISA) 測定血中特定抗體的效價。

(2) 以酵素連鎖免疫分析法 (ELISA) 偵測 Der p 5 特異性 IgG 和 IgE 抗體的濃度變化：

將 Der p 5 溶於 pH 9.6 的碳酸氫鈉緩衝液 (10 μg/ml)，以 100 μl 加到每一格 (well) 中；用聚膠模封好，於 4 °C 隔夜；隔天用 PBS-Tween 20 每格 200 μl 冲洗 5 次；然後加入填充緩衝液 (blocking buffer, 3% BSA) 每格 200 μl，在室溫下靜置 2 小時；再用 PBS-Tween 20 每格 200 μl 冲洗 3 次；陰性對照組 (blank) 和測試的血清分別各以稀釋緩衝液 (1% BSA) 稀釋；欲測試 IgG 濃度，則將待測試的血清稀釋 50 倍；若測試 IgE 濃度，則將血清稀釋 10 倍；已稀釋的樣品取 100 μl 加到每一格中，放置於 37 °C 2 小時後；用 PBS-Tween 20 每格 200 μl 冲洗 5 次；再加入 Biotin-antimouse IgG (或 Biotin-antimouse IgE) (0.5 μg/ml) 100 μl/well，靜置於 37 °C 2 小時後；(若要測試 IgE 濃度，則須靜置 6 小時)；用 PBS-Tween 20 每
格 200 μl 沖洗五次；加入 Streptavidin-alkaline phosphate (1:1000) 100 μl/well，靜置於 37 ℃ 1 小時；用 PBS-Tween 20 每格 200 μl 沖洗 6 次；後加入（p-Nitrophenylphosphate, di-sodium）100 μl/well 呈色，呈色結果以 OD405 值減 OD650 值後表示。為方便每次實驗結果之比較，本實驗乃製作標準血清（standard serum），其方法為取 5 隻小白鼠依致敏反應步驟進行二次免疫注射，二次注射期間並不餵食中藥，於第二次注射一週後，採全身血，並將 5 隻小白鼠的血液混合，將其定為 100 ELISA unit。(8)

(3) 以酵素連結免疫分析法 (ELISA) 偵測氣管肺泡沖洗液中的 IFN-γ & IL-4 濃度變化：

分別取 antimouse IFN-γ (Cat. No 19301T, PharMingen, USA) 或 antimouse IL-4 (Cat.No19231V, PharMingen, USA) (0.5 mg/ml) 40 μl 溶於包覆緩沖液 (coating buffer, 0.1M Na2HPO4, pH 9.0) 10 ml，加 100 μl 到每一個 well 中；用塑膠膜封好，置入 4 ℃，放置隔夜；隔天用洗滌緩沖液 (washing buffer, 0.05% Tween 20 溶於 PBS), 200 μl/well 洗 5 次；加入填充緩沖液 (blocking buffer, 1% BSA 溶於 PBS), 200 μl/well，在室溫下靜置 30 分鐘；然後用洗滌緩衝液 200 μl/well 洗 5 次；將氣管沖洗液取 100 μl 加到每個 well，於 4 ℃ 放置隔夜；隔天用洗滌緩衝液 (washing buffer) 200 μl/well 洗五次；加入 Biotin-antimouse IFN-γ (Cat. No 18112D, PharMingen, USA) 和 Biotin-antimouse IL-4 (Cat. No 18042D, PharMingen, USA) (0.5 μg/ml) 100 μl/well，室溫下靜置 1 小時後；用洗滌緩衝液 200 μl/well 洗 6 次；再加入 Streptavidin-alkaline phosphate(1:1000) 100 μl/well，室溫下靜置 30 分鐘；用洗滌緩衝液 200 μl/well 洗 8 次；最後加入（p-Nitrophenylphosphate, di-sodium）100 μl/well 呈色，呈色結果以 OD405 值減 OD650 值後表示。

3. 中藥制備

將 50 mg 中藥製劑(麥門冬湯，編號 1104，順天堂科學中藥，台北，臺灣)以約 180 μl Tween 20 潤濕，之後利用均質機 (DC-3S, 新光精機工業股份有限公司) 將各個方劑磨細，然後加水至此中藥溶液至體積為 2 ml（最終濃度為 25 mg/ml）。實驗小鼠依其重量分別利用餵食器強迫予以給藥 (0.4 ml 上述溶液/20 克小鼠體重)。

part II: 中藥麥門冬湯與西藥 aminophylline 之交互作用

1. 實驗動物：

由國家實驗動物繁殖及研究中心購得之雌性 4~6 週 Wistar 大鼠，飼養於光照、黑暗各 12 小時，室溫維持在 25±1 ℃，濕度維持在 60±5 %，水分與飼料充分供給之獨立空調的動物房內。將實驗動物隨機分成以下組別：

1. 只給西藥及 2. 同時給予中藥及西藥。
2. 藥物投與:

臨床上，參門冬湯的建議用量為 3g/30Kg BW，換算成大鼠建議用量為 126mg/200g BW。西藥 aminophylline 用量為 25 mg/Kg，於給藥後第 15min、30min、1、2、3、4、6、8、10、12hr，以 heparin 潤濕過的離心管收集血液 0.3ml，以 400xg/10min 離心收集血漿並保存於-20°C。

3. 藥物配製

參門冬湯（順天堂）臨床用量為 3g/30Kg B.W.相當於 7g/70Kg B.W，經由人類與老鼠劑量之體表面積係數 0.018 换算後，相當於 126mg/200g B.W. 大鼠。Aminophylline 劑量為 25mg/Kg B.W.。給藥方式為以餵食管餵食 1ml 之樣本。

4. 給藥及樣本製備

使用成熟 Wistar 公鼠 (250-300g)。實驗(一)分為三組(n=6)分別為單獨口服 aminophylline 組、aminophylline 與參門冬湯並用組及先口服參門冬湯 1hr. 再給予 aminophylline 組。大鼠於餵食 aminophylline 後之 15min、30min、60min、2hr、3hr、4hr、6hr、8hr、10hr 及 12hr，分別採集血液約 0.5 mL 置於 heparinized eppendorff 中，迅速離心 (4000 rpm/10 min) 收集血漿，並保存於-20°C。實驗(二)則以連續餵食不同濃度中藥參門冬湯 7 天後，於第 8 天餵食西藥 aminophylline，再依建立完成之 aminophylline 採血測量模式進行 HPLC 分析。

5. aminophylline 分析:

(1) aminophylline calibration curve

(i) 分別稱取 0.1068 g aminophylline 溶於 20 mL 去離子水中 (5.34 mg/mL)，及稱取 0.02 g caffeine 溶於 10 mL acetonitrile 中 (2 mg/mL)。
(ii) 配製 aminophylline 標準品濃度為 0、2、6、10、20、50 μg/mL。步驟如下：各取 5.34 mg/mL aminophylline 0、0.37、1.12、1.87、3.75、9.36μL，並以去離子水定量至體積 700μL，另將 2 mg/mL caffeine 以 acetonitrile 稀釋至 20 μg/mL（內標準品），各取 caffeine (20 μg/mL) 300μL 加入配好之 aminophylline 標準品中，使每一標準溶液總體積為 1mL。

(2) 藥物濃度分析

本實驗以 HPLC Hypersil ODS RP 18 5μm (250x4.6 mm) Column 偵測血液中 aminophylline 的濃度。首先以標準品 aminophylline 及 caffeine 建立定性分析條件，將 aminophylline 溶於去離子水中 (1 mg/ml) 及 caffeine 溶於 acetonitrile (1 mg/ml)，以 1:1 比例各取 aminophylline 及 caffeine 混合，分析條件如下：移動相如下：50mM磷酸緩衝溶液 (pH 6.0) : acetonitrile=92:8
(v/v)；流速：1 ml/min；注入样本体积：10μL；侦测波长为 254nm。结果
如分析图谱所示，aminophylline 滞留时间(Retention time, Rt)为 9.048
min，caffeine 滞留时间(Retention time, Rt)为 17.388 min。

样品前处理步骤如下，取 100 μl 血浆与 100 μl acetonitrile（含内标准
品-caffeine) 充分混合均匀约 2min 后可去除血浆中蛋白质，离心 4000×
g/15min，取上清液 20 μl，以 HPLC Hypersil ODS RP_{18} 5μm (250×4.6 mm)
Column 侦测血液中 aminophylline 的浓度。以不同浓度之 aminophylline
经管柱分析所得 peak 面积，可求得一 aminophylline 濃度與 peak 面积的
校正曲線，經換算後可求得血液中 aminophylline 的濃度。
(i) 取老鼠血清样品与 acetonitrile（含内标准品 caffeine 20μg/mL）以 7/3(v/v)
比例充分混合均匀约 2min。
(ii) 离心 (4000×g/15min) 取上清液并置入 HPLC 自动注射器之 vial 中。
(iii) Waters HPLC system:
 (a) Waters 600 Controller
 (b) Waters 2996 Photodiode Array Detector
 (c) Waters Delta 600
 (d) Waters 717 plus Autosampler
(iv) analysis condition:
 (a) Column: Bondclone C18 (5μm, 300×3.9 mm)
 (b) Mobile phase: 0.01 M phosphate buffer (pH 6.0):acetonitrile = 90:10
 (c) Injection: 20 μL
 (d) Flow rate: 1 ml/min
 (e) Wavelength: 280 nm
(v) 對標準品及老鼠血清样品进行 HPLC 层析定量分析。(Aminophylline R_1
8.725 min；Caffeine R_1 15.617 min)
(vi) 由各时间点的药物浓度求得药物动力学相关数据 C_{max}、T_{max}、T_{1/2}、
K_a·K 及 AUC_0。以 Waters HPLC 之 Empower 軟體進行 data 分析處理。
參、結果

part I:參門冬湯治療氣喘動物模型之建立及療效評估

一、中藥參門冬湯可以降低氣喘小鼠血中 Der p specific IgE

以酵素連結免疫分析法 (ELISA) 偽測 Der p 5 特異性 IgG 和 IgE 抗體的濃度變化，結果發現中藥參門冬湯可以降低氣喘小鼠血中 Der p specific IgE(圖 1)。

二、中藥參門冬湯可以改善氣喘小鼠之肺功能

中藥參門冬湯可以降低氣喘小鼠肺功能 PC_{100}(圖 2)。

三、中藥參門冬湯可以降低氣喘小鼠肺泡沖洗液中之細胞激素濃度

以酵素連結免疫分析法(ELISA)偽測氣管肺泡沖洗液中的細胞激素的濃度 (IFN-γ & IL-4) 變化，結果發現中藥參門冬湯可以降低氣喘小鼠肺泡沖洗液中之細胞激素濃度(圖 3)。

<table>
<thead>
<tr>
<th></th>
<th>參門冬湯</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dp-specific IgG</td>
<td>0.55±0.02</td>
<td>0.59±0.01</td>
</tr>
<tr>
<td>Dp-specific IgE</td>
<td>0.55±0.13</td>
<td>0.98±0.12</td>
</tr>
<tr>
<td>IL-4</td>
<td>0.35±0.11</td>
<td>1.01±0.82</td>
</tr>
<tr>
<td>INF-γ</td>
<td>0.48±0.23</td>
<td>1.12±0.73</td>
</tr>
</tbody>
</table>

part II:中藥參門冬湯與西藥 aminophylline 之交互作用

一、建立偽測 Wistar 大鼠血中 aminophylline 濃度的基本模型

大鼠於餵食 aminophylline 後之 15 min、30 min、60 min、2 hr、3 hr、4 hr、6 hr、8 hr、10 hr 及 12 hr，分別採集血液約 0.5 mL 置於 heparinized eppendorff 中，迅速離心 (4000 rpm/10 min) 收集血漿，並保存於-20°C。

以 caffeine 為內標準品(internal standard)，利用高壓液相層析法(high pressure liquid chromatography; HPLC)，建立 Wistar 大鼠在餵食 25 mg/kg 西藥 aminophylline 後不同時間血中 aminophylline 之濃度。Coffeine 的滯留時間(retention time; Rt)為 15.617 分，aminophylline 的滯留時間則為 8.725 分(圖 1)。

利用 HPLC 分析濃度，建立 Wistar 大鼠餵食 aminophylline 後偽測血中濃度與波峰面積之校正曲線圖(圖 5)。

二、不同給藥時間之中西藥交互作用

實驗(一)：將動物分為三組(n=6)，分別為單獨口服西藥 aminophylline 組、西藥 aminophylline 與中藥參門冬湯並用組及先口服中藥參門冬湯一小時再給予西藥 aminophylline 組。結果發現，單獨口服西藥 aminophylline 組及西藥 aminophylline 與中藥參門冬湯並用組血中 aminophylline 之尖峰濃度皆在 30 分
鐘內出現，但先服中藥參門冬湯一小時再給予西藥 aminophylline 這組動物，aminophylline 血中濃度在 30 分鐘時也出現和前兩組一樣之濃度，但在 1、2、3 小時後，aminophylline 濃度有上升的趨勢，且在 3 小時達到最高的血中濃度和其它兩組有顯著的差異(圖 6)。

Aminophylline 給藥後 8 小時，三組動物之血中濃度皆已下降至原先之一半以下，且三組沒有差異，表示 aminophylline 的代謝及排泄在 8 小時以後就沒有受到中藥參門冬湯之影響(圖 6)。

三組 aminophylline 濃度 12 小時內之 area under curve(AUC)也以第三組先餵食中藥一小時後再給西藥 aminophylline 之動物組最大(大於前兩組)(圖 6)。

<table>
<thead>
<tr>
<th></th>
<th>aminophylline</th>
<th>中西藥同時</th>
<th>一小時前中藥先餵食</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min</td>
<td>16.463</td>
<td>26.270</td>
<td>10.324</td>
</tr>
<tr>
<td>30 min</td>
<td>21.760</td>
<td>26.663</td>
<td>21.093</td>
</tr>
<tr>
<td>1 hr</td>
<td>24.631</td>
<td>29.122</td>
<td>23.540</td>
</tr>
<tr>
<td>2 hr</td>
<td>17.763</td>
<td>25.287</td>
<td>22.204</td>
</tr>
<tr>
<td>3 hr</td>
<td>19.590</td>
<td>25.200</td>
<td>22.558</td>
</tr>
<tr>
<td>4 hr</td>
<td>16.799</td>
<td>24.471</td>
<td>20.172</td>
</tr>
<tr>
<td>6 hr</td>
<td>13.868</td>
<td>14.499</td>
<td>16.664</td>
</tr>
<tr>
<td>8 hr</td>
<td>10.199</td>
<td>12.989</td>
<td>10.589</td>
</tr>
<tr>
<td>10 hr</td>
<td>8.666</td>
<td>10.792</td>
<td>7.929</td>
</tr>
<tr>
<td>12 hr</td>
<td>5.129</td>
<td>8.053</td>
<td>5.300</td>
</tr>
</tbody>
</table>

三、不同中藥濃度長期使用後中西藥之交互作用

實驗(二)：以連續餵食不同濃度中藥參門冬湯 7 天後，於第 8 天餵食西藥 aminophylline，再依建立完成之 aminophylline 採血測量模式進行 HPLC 分析。結果發現三組動物血中 aminophylline 最高濃度(peak concentration)均在 60 分鐘內出現，三組之 AUC 並無明顯差異。表示不同濃度中藥參門冬湯對西藥 aminophylline 之吸收及代謝並無直接影響，即使連續給予 7 天中藥，但在間隔一天的給藥時間後，aminophylline 給予時已無實驗(一)中的影響存在，顯示長時間使用中藥參門冬湯，對需要使用西藥 aminophylline 時，並無中西藥之交互作用存在(圖 7)。
肆、討論

中華藥之使用已有數千年的歷史，雖然一般認為中藥的副作用較小，可以長時間使用，但藥即是毒，只要任何有作用的藥物都可能存有潛在的毒副作用，只是發生的時間和使用的劑量大小並沒有完整的報導。然而自1992年比利時之馬兜鈴酸腎病變，雖然是誤用防已，但大量且長期使用的結果，造成許多人發生急性腎衰竭甚至造成死亡，長期追蹤這些病人也發現增加了不少得到泌尿系統癌症的機率，從此中藥藥造成的腎病變或肝毒性不斷的被提出。除了中草藥之毒副作用相當重要以外，實際上在台灣或有使用另類療法的國家都存在另外一個重要的問題，就是西藥間之交互作用，臨床上西藥和中藥同時使用的情形比比皆是，因此不管是西醫或是中藥，臨床上都必須要面對中西藥間是否有交互作用的這個問題，常有一些經驗上的說法，就是中藥、西藥不要同時使用，但卻又常聽到中、西藥使用時要間隔半個小時、一個小時甚至兩個小時以上，但是到底這些說法有無實驗的基礎或是實證醫學的根據，都是有待研究的課題。

然而，由於中藥的指標成份與有效成份未必相同，而且即使單味中藥參所冬之成份也極為複雜，更何況五種以上單味藥所組成的參湯，而且有部分中藥的成份在腸內經由腸內菌代謝後會形成其它有效的二次代謝物，所以有關中藥之藥物動力學的研究相對較困難，所以結論也較少。以氣喘病人的治療為例，臨床上中醫師之處方都是以複方為主體再加減單味藥，但是有相當多的病人，不管在相同或不同的醫院治療氣喘時，同時有使用中藥及西藥。在氣喘發作期現代醫學以類固醇的治療為主，中藥則依病人不同證型給予宣肺平喘之辯治加減，如小青龍湯及麻杏石甘湯，但是在慢性緩解期，現代醫學除了使用吸入性的類固醇以外，還有茶鹼類的藥物也相當常被使用，如xanthium及aminophylline等，由於臨床上茶鹼的治療劑量及中毒劑量範圍並不大(10-20)，因此使用茶鹼的病人，必須要定時監測血中之茶鹼類藥物之濃度，因此本研究首先針對中藥緩解期常用之處方參湯，建立中藥參湯治療氣喘的動物模式，並進一步與西藥緩解期和發作期都會使用的aminophylline併用，觀察中藥是否對aminophylline的血中濃度有任何改變。

由於塵螨致敏的氣喘小鼠體重太小，無法由小鼠取得足夠的血量，所以本研究改以Wistar大鼠為模型中藥參湯與西藥aminophylline間交互作用的實驗動物。首先建立偵測Wistar大鼠血中aminophylline濃度的基本模型，以caffeine為內標準品(internal standard)，利用高壓液相層析法(high pressure liquid chromatography; HPLC)，建立Wistar大鼠在餵食25mg/kg西藥aminophylline後不同時間血中aminophylline之濃度。Coffeine的滯留時間(retention time; Rt)為15.617分，aminophylline的滯留時間則為8.725分(圖1)。利用HPLC分析濃度，建立Wistar大鼠餵食aminophylline後偵測血中濃度與波峰面積之校正曲線圖(圖2)。

接下來進行不同時間給予相同濃度中藥參湯後觀察中西藥間之影響。實驗(1)分為三組(n=6)分別為單獨口服aminophylline組、aminophylline與參湯組，並用組及先口服參湯一小時後再給予aminophylline組。結果發現，單獨口服
西藥 aminophylline 組及西藥 aminophylline 與中藥參門冬湯並用組血中 aminophylline 之尖峰濃度皆在 30 分鐘內出現，但先口服中藥參門冬湯一小時再給予西藥 aminophylline 這組動物，aminophylline 血中濃度在 30 分鐘時也出現和前兩組一樣之濃度，但在 1、2、3 小時後，aminophylline 濃度有上升的趨勢，且在 3 小時達到最高的血中濃度和其它兩組有顯著的差異。表示中藥參門冬湯先給一個小時後對西藥 aminophylline 會產生影響，不但增加了 aminophylline 血中之最高濃度，也延長了 aminophylline 最高濃度持續的時間，從小於 30 分鐘延長到可以持續 3-6 個小時，證實中西藥間確實存在藥物之交互作用。中藥參門冬湯對西藥 aminophylline 是否有協同作用(synergic effect)則需要進一步的實驗加以證實。中西藥併用造成 aminophylline 的濃度上升，若仍在病人之治療劑量(therapeutic dose range)內，可以屬於協同作用，表示中藥參門冬湯有加強 aminophylline 的效果，但必須同時注意這一類的中藥和西藥同時使用時，若是超出治療劑量的安全範圍，則會造成西藥 aminophylline 噁心及嘔吐等毒副作用，因此，有必要以進一步臨床病人的資料加以分析研究。

Aminophylline 給藥後 8 小時後，三組動物之血中濃度皆已下降至原先之一半以下，且三組沒有差異，表示 aminophylline 的代謝及排泄在 8 小時以後就沒有受到中藥參門冬湯之影響。比較 12 小時內三組動物 aminophylline 血中濃度之 area under curve (AUC)，以先餵食中藥一小時後再給西藥 aminophylline 之動物組 AUC 最大，其次是中藥西藥同時給予，只單獨給予 aminophylline 組其 AUC 最小，表示中藥參門冬湯可以增加西藥 aminophylline 之血中濃度，而以先餵食中藥 1 小時這組動物所得到的協同作用(synergic effect)最大。

實驗(二)則以連續餵食不同濃度中藥參門冬湯 7 天代表長期使用中藥之情況下，需要使用西藥時，中西藥是否有交互作用，中藥是否影響西藥之藥效、吸收及代謝。結果發現三組動物血中 aminophylline 最高濃度(peak concentration)均在 60 分鐘內出現，三組之 AUC 並無明顯差異。表示不同濃度中藥參門冬湯對西藥 aminophylline 之吸收及代謝並無直接影響，即使連續給予 7 天中藥，但在間隔一天的給藥時間後，aminophylline 給予時已無實驗(一)中的影響存在，顯示長時間使用中藥參門冬湯，對需要使用西藥 aminophylline 時，並無中西藥之交互作用存在。因此本研究僅能證時 Wistar 大鼠模型中，中藥參門冬湯和西藥 aminophylline 間之影響，無法推論於所有中西藥交互作用之問題，然而臨床上，若中西藥併用時，需間隔多少時間，則需要更多的基礎實驗進行後，推論用於臨床試驗才能得到答案。
伍、結論與建議

中藥參門冬湯可以降低氣喘小鼠血中 Der p specific IgE、改善肺功能及下降小鼠肺泡沖洗液中之細胞激素濃度，表示參門冬湯在小鼠動物模式中可以治療氣喘，提供進一步臨床前試驗之基礎。

中西藥是否有交互作用，由本實驗中得到證實，中西藥同時給藥會影響到藥物的吸收及代謝，中藥參門冬湯可以延長西薬 aminophylline 作用的時間及血中的最高濃度，顯示中藥能延長西藥的作用時間，尤其是中藥先餵食一個小時後，再給西藥 aminophylline 時，所造成的影響最大，尤其在前 3 小時侯影響較大，因此必須同時注意是否也會造成 aminophylline 的中毒(intoxication)，然而超過 8 小時就沒有其它影響了，顯示若足夠的間隔時間，中西藥的交互作用就會減低甚至消失，即使高濃度的中藥(2 倍)也沒有影響。

中西藥交互作用的問題，是相當重要的課題，但就氣喘而言，使用的藥物尚有類固醇、支氣管擴張劑等，中藥也還有定喘湯、麻杏石甘湯、小青龍湯等，彼此間是否存在交互作用，急性期、緩解期中西藥併用時，是否要有時間的間隔，需要進一步進行更多的基礎及臨床試驗來加以證實。
陸、參考文獻

4. 中西藥物相互作用。朱建華著。人民衛生出版社。1989; 99231-250。

11. 許清祥、徐昀耀、李明惠：中醫平喘方劑對於過敏原特異性呼吸道發炎反應的作用機轉評估。中醫藥雜誌 2000; 11: 111-121。

12. 施寶珠、沈自伊：某些平喘方藥的臨床應用和研究的進展。中醫雜誌 1985; 26 :74-75

13. 崔紅生：支氣管哮喘中西醫結合臨床診治的思路與方法。中醫雜誌 2001;42(11): 692-693。

14. 田正馨、陳瑞：中藥防治哮喘的免疫學機理研究進展。中國中醫藥信息雜誌 2001;8(7): 14-15。
15. 李隆昆：中西醫結合治療支氣管哮喘。中國中醫藥信息雜誌 2001; 8(9): 64-65。

20. Smith DB, Davern KM, Board PG, Tiu WU, Garcia EG, Mitchell GF, Mr 26000 antigen of Schistosoma japonicum recognized by resistant WEHI 129/J mice is a parasite glutathione Stransferase. Proc Natl Acad Sci USA 1986; 83:8703-8707.
Fig. 1. ELISA of Der p 5-specific IgG and IgE antibody after Der p 5 inhalation challenge. Der p 5 10μg adsorbed with alum were injected i.p. into mice. Sera were collected for ELISA measurement 21 days after inhalation challenge (BALB/c, n=10).
Fig. 2. Mice (BALB/c strain) received with Der p 5. * indicates p<0.05.
Fig. 3. ELISA of cytokines (IL-4 and INF-\gamma) after Der p 5 inhalation challenge. Der p 5 10\mu g adsorbed with alum were injected i.p. into mice. Sera were collected for ELISA measurement 21 days after inhalation challenge (BALB/c, n=10).
圖 4 Aminophylline 及內標準品 caffeine 在 HPLC Bondclone C18 管柱之層析圖。X 軸為滯留時間 (Retention Time, R_t)；Y 軸為 OD280nm。Aminophylline R_t 8.725 min；Caffeine R_t 15.617 min。

圖 5 Aminophylline 濃度與波峰面積之校正曲線圖。Y=1.47e-01X+1.08e-01；R^2 = 0.999910。
圖 6 大鼠血漿中 aminophylline 平均濃度-時間曲線圖。口服單劑量 aminophylline 25mg/Kg(*)；同時口服單剂量 aminophylline 25mg/Kg 及參閏冬湯 630mg/Kg(■)；先飽食參閏冬湯 630mg/Kg 1 小時後再口服單劑量 aminophylline 25mg/Kg(▼)。

圖 7 大鼠血漿中 aminophylline 平均濃度-時間曲線圖。口服單劑量 aminophylline 25mg/Kg(▼)；先以 QD 方式口服參閏冬湯 630mg/Kg 連續 7 天後，第 8 天口服單劑量 aminophylline 25mg/Kg (■)；先以 BID 方式口服參閏冬湯 630mg/Kg 連續 7 天後，第 8 天口服單劑量 aminophylline 25mg/Kg (▲)。