EGCG protects against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-mediated signaling

Hsiu-Chung Ou,1 Tuzz-Ying Song,2 Yueh-Chiao Yeh,3 Chih-Huang Yang,4,5 Shun-Fa Yang,6 Tsan-Hung Chiu,7 Kun-Ling Tsai,8 Kai-Ling Chen,1 Yun-Jhen Wu,1 Chiou-Sheng Tsai,9 Li-Yun Chang,10 Wei-Wen Kuo,11* and Shin-Da Lee1,12*

1Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung; 2Department of Nutrition and Health Science, ChungShou Institute of Technology, Changhua; 3Graduate Institute of Natural Healing Sciences, Nanhua University, ChiaYi; 4Graduate Institute of Basic Medical Science, China Medical University, Taichung; 5Department of Health and Nutrition Biotechnology, Asia University, Taichung; 6Institute of Medicine, Chung Shan Medical University, Taichung; 7Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung; 8Graduate Institute of Clinical Medical Science, China Medical University, Taichung; 9Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung; 10Graduate Institute of Molecular Systems Biomedicine, 11Department of Biotechnology, China Medical University, Taichung; and 12Department of Healthcare Administration, Asia University, Taichung, Taiwan

Address for reprint requests and other correspondence: S.-D. Lee, Dept. of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical Univ., 91 Hsueh-Shih Road, Taichung 40202, Taiwan (e-mail: shinda@mail.cmu.edu.tw).

Submitted 6 August 2009; accepted in final form 10 February 2010

Oxidative stress and superoxide anion generation are believed to play important roles in the pathogenesis of various cardiovascular diseases, including arteriosclerosis. Under oxidative stress, low-density lipoprotein (LDL) particles trapped in the vessel wall become oxidized. The resulting oxidized LDL (oxLDL) causes activation, followed by dysfunction of endothelium. Various enzymatic origins of reactive oxygen species (ROS) in the vasculature have been proposed, including xanthine oxidase, myeloperoxidase, lipoxygenase, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Furthermore, ROS can regulate the expression of redox-sensitive vascular genes such as chemokines and adhesion molecules by changing the redox state of endothelial cells (33). These molecules facilitate the adhesion of monocytes to endothelial cells, thereby initiating atherosclerosis.

The major source of intracellular ROS in vascular cells is NADPH oxidase, a multisubunit enzymatic complex comprising two membrane-bound subunits, gp91 and p22phox. Assembly of the active complex is regulated by cytoplasmic subunits such as p47phox, p67phox, and a low-molecular G protein, Rac-1 (1). A recent study indicated that the activation of Rac-1 and p47phox is involved in the generation of superoxide, a molecule that stimulates inflammatory gene expression through a redox-sensitive signaling pathway in vascular endothelial cells (43). These findings strongly suggest that both p47phox and Rac-1 are critical components of endothelial NADPH oxidase.

LOX-1, a lectin-like receptor for oxLDL, is present on endothelial cells (50). In vascular endothelial cells, LOX-1 activation has been suggested to induce several intracellular signaling pathways, including the activation of NADPH oxidase on the cell membrane, resulting in the quick increase of intracellular ROS, including O2 and H2O2 (8). Increased levels of O2 can react with intracellular NO, resulting in the decrease of intracellular NO (12) and the activation of p38 (MAPK) (35), protein kinase B (27), transcription factor NF-κB, and subsequent downstream inflammatory responses (11). These

* W.-W. Kuo and S.-D. Lee contributed equally to this work.

http://www.jap.org 8750-7587/10 Copyright © 2010 the American Physiological Society 1745
activations are attenuated by pretreating cells with a specific LOX-1 antibody or antisense LOX-1 mRNA (6, 8).

Green tea (Camellia sinensis) has only recently been studied extensively for its beneficial health effects (5). Numerous epidemiological studies have reported an inverse relationship between tea consumption and cardiovascular events (46), and this phenomenon may be associated with the antioxidant capacity of components of green tea to scavenge various types of radicals in aqueous and organic environments (53). Green tea is chemically characterized by the presence of high amounts of polyphenolic compounds known as catechins, the most abundant of which is epigallocatechin-3-gallate (EGCG). EGCG has been reported to possess both anti-inflammatory and anti-atherogenic properties in experimental studies conducted in vitro and in vivo [16, 31, 57]. It also has been hypothesized that the antiatherosclerotic activity of EGCG is associated with its antioxidative activity. Substantial evidence suggests that EGCG acts as an antioxidant by attenuating lipid peroxidation caused by various forms of ROS (19), thereby reducing the expression of the endogenous NO synthase inhibitor asymmetric dimethyl arginine (52) as well as reducing the expression of cytokine-induced vascular adhesion molecule-1 (31). Whether EGCG influences oxLDL-induced NADPH oxidase expression and related downstream signaling pathways by inhibiting the expression of LOX-1 is not clear. Since endothelial NADPH oxidase is the major contributor to ROS production in vascular walls, and oxidative stress is believed to be implicated in aberrant behavior of the vascular endothelium and the pathogenesis of cardiovascular disease, we therefore sought to examine how EGCG regulates endothelial NADPH oxidase-mediated downstream signaling caused by oxLDL and whether such regulation correlates with an effect on LOX-1 expression.

MATERIALS AND METHODS

Reagents. Fetal bovine serum, medium 199 (M199), and trypsin-EDTA were obtained from Gibco (Grand Island, NY); low-serum growth supplement was obtained from Cascade (Portland, OR); and 2’,7’-bis(carboxyethyl)-5(6)-carboxyfluorescein-acetoxyethyl ester (BCECF-AM), diphenylene iodonium (DPI), EGCG, penicillin, and streptomycin were obtained from Sigma (St. Louis, MO). Dihydroethidium (DHE) was purchased from Molecular Probes (Eugene, OR); anti-LOX-1, anti-monoocyte chemotactic protein-1 (MCP-1), anti-intercellular adhesion molecules (ICAM), anti-E-selectin, IL-8, and ET-1 ELISA kits were purchased from R&D Systems (Minneapolis, MN). Anti-Cu, Zn superoxide dismutase (SOD-1) and anti-Mn superoxide dismutase (SOD-2) were obtained from Santa Cruz Biotechnology (Santa Cruz, CA); anti-NF-κB/p65, anti-IκBα, anti-endothelial NO synthase (eNOS) were obtained from Transduction Laboratories (San Jose, CA); anti-Rac-1 and anti-p47phox were obtained from BD Biosciences (Piscataway, NJ); and anti-cyclooxygenase-2 (COX-2) was obtained from Santa Cruz Biotechnology (Brea, CA) by homology search with the human genome and later tested (BLAST, National Center for Biotechnology Information, Bethesda, MD) by homology search with the human genome and later confirmed by disassociation curve analysis. The oligonucleotide sequences were as follows: LOX-1 sense primer, 5’-GATGCCCCACTTGTCA-GAT-3’; antisense primer, 5’-CAGAGTTCGCACCTACGTCA-3’; β-actin sense primer, 5’-AGGTCACTCATATGGCAACGA-3’; antisense primer, 5’-CACCCTGTAGGAATTGATGTG-3’. PCRs were performed using the SYBR Green method in an ABI 7000 sequence detection system (Applied Biosystems) according to the manufacturer’s guidelines. The reactions were set by mixing 12.5 μl of the SYBR Green Master Mix (Applied Biosystems) with 1 μl of a solution containing 5 mM/μl of both oligonucleotides, and 1 μl of a cDNA solution (1/100 of the cDNA synthesis product). The cycle threshold (Ct) value was determined as the number of PCR cycles required for the fluorescence signal to exceed the detection threshold value (fixed at 0.2 relative fluorescence units). This threshold was set constant throughout the study and corresponded to the log linear range of the amplification curve.

Measurement of ROS production. The effect of EGCG on ROS production in HUVECs was determined by performing a fluorometric assay, using DHE as a probe for the presence of superoxide. After preincubation for 2 h with the indicated concentrations of EGCG, HUVECs were incubated with DHE for 1 h, followed by incubation with oxLDL for 2 h. The fluorescence intensity was measured at 540-nm excitation and 590-nm emission (before and after exposure to oxLDL) using a fluorescence microplate reader (Labsystems, Mountain View, CA). The percent increase in fluorescence per well was calculated using the formula [(Ft – F0)/F0] × 100, where F0 is the fluorescence at 2 h of oxLDL exposure and Fo is the fluorescence at 0 min of oxLDL exposure. To evaluate the role of NADPH oxidase and LOX-1 in oxLDL-induced ROS generation, we preincubated cells with the flavoprotein inhibitor DPI (5 μM) and anti-LOX-1 monoclonal antibody (mAb; 40 μg/ml) for 2 h before exposure to oxLDL. Preparation of nuclear and cytosolic extracts. Nuclear and cytosolic extracts were isolated with a Nuclear and Cytoplasmic Extraction kit (Pierce Chemical, Rockford, IL). After the incubation period, HUVECs were collected by centrifugation at 600 g for 5 min at 4°C. The pellets were washed twice with ice-cold PBS, followed by the addition of 0.2 ml of cytoplasmic extraction buffer A and vigorous mixing for 15 s. Ice-cold cytoplasmic extraction buffer B (11 μl) was added to the solution. After vortex mixing, nuclei and cytosolic fractions were separated by centrifugation at 16,000 g for 5 min. The cytoplasmic extracts (supernatants) were stored at −80°C.
the coverslips were loaded with 2
with oxLDL (130 μg/ml) for 24 h. The medium was then
incubated with oxLDL (130 μg/ml) for 24 h. The medium was then
removed, and 0.1 ml/well of THP-1 cells (prelabeled with 4 μM
BCECF-AM for 30 min in RPMI at a density of 1 × 10⁶ cells/ml) was
added in RPMI. The cells were allowed to adhere at 37°C for 1 h
in a 5% CO₂ incubator. The nonadherent cells were removed by
gentle aspiration. Plates were washed three times with M199. The number
of adherent cells was estimated by microscopic examination; the cells
were then lysed with 0.1 ml of 0.25% Triton X-100. The fluorescence
intensity was measured at 485-nm excitation and 538-nm emission
using a fluorescence microplate reader (Labsystems).

Fig. 1. Inhibitory effect of epigallocatechin-3-gallate (EGCG) on oxidized
LDL (oxLDL)-induced endothelial lectin-like oxLDL receptor-1 (LOX-1)
gene (A) and protein expression (B). Human umbilical vein endothelial cells
(HUVECs) were pretreated with EGCG (2.5–20 μM) or diphenylene
iodonium (DPI; 5 μM) for 2 h, followed by exposure to oxLDL (130 μg/ml)
for a further 24 h. At the end of the incubation period, cells were lysed and
LOX-1 mRNA and protein were analyzed by real-time PCR and Western blotting,
respectively. Both mRNA and protein levels of LOX-1 were normalized to the
level of β-actin. Data are means ± SE of 3 different experiments. #P < 0.05
compared with untreated control HUVECs. *P < 0.05 compared with oxLDL-
stimulated HUVECs.

Preparation of membrane and cytosolic extracts. A cellular mem-
brane fraction was prepared with Mem-PER (Pierce) according to the
manufacturer’s instructions. The Mem-PER system consists of three
reagents: reagent A is a cell lysis buffer, reagent B is a detergent
dilution buffer, and reagent C is a membrane solubilization buffer.

After the incubation period, HUVECs were collected by centrifuga-
tion at 600 g for 5 min at 4°C. Each cell pellet, containing 5 × 10⁶
cells, was lysed at room temperature using Mem-PER reagent A.
Membrane proteins were solubilized on ice with Mem-PER reagent C
diluted 2:1 with Mem-PER reagent B. Reagents A and B/C were
supplemented with Halt protease inhibitor cocktail (Pierce Biotech-
nology). The solubilized protein mixture was centrifuged at 10,000
g for 2 min at 4°C to remove cellular debris. The clarified supernatant
was heated at 37°C for 10 min, followed by centrifugation at 10,000
g for 2 min to produce separated membrane and hydrophilic protein
fractions. The hydrophobic fraction of membrane proteins (bottom
layer) was stored at −80°C until use.

Immunoblotting. To determine whether EGCG could ameliorate the
oxLDL-induced apoptosis-regulating proteins, we grew HUVECs to
confluence, pretreated cells with EGCG for 2 h, and then stimulated
samples.

Measurement of intracellular Ca²⁺ concentration. To determine the
effect of EGCG on the rise of oxLDL-induced intracellular Ca²⁺
concentration ([Ca²⁺]), we seeded HUVECs onto 24-mm glass cov-
erslips, pretreated cells with EGCG for 2 h, and then stimulated cells
with oxLDL (130 μg/ml) for the indicated time periods. The cells on
the coverslips were loaded with 2 μM fura-2 AM (Molecular Probes)
in M199 and allowed to stand for 30 min at 37°C. After being
loaded, the cells were washed with HEPES buffer (in mM: 131 NaCl, 5 KCl,
1.3 CaCl₂, 1.3 MgSO₄, 0.4 KH₂PO₄, 20 HEPES, and 25 glucose, pH
7.4) to remove excess fluorescent dye. The fluorescence of the cells on
each coverslip was then measured and recorded using an inverted
Olympus IX-70 microscope. [Ca²⁺], in endothelial cells was moni-
tored at an emission wavelength of 510 nm with excitation wave-
lengths alternating between 340 and 380 nm using a Delta Scan
System (Photon Technology International, Princeton, NJ) and was
calculated using Grynkiewicz’s method (18).

Adhesion assay. HUVECs at 1 × 10⁵ cells/ml were cultured in
96-well flat-bottom plates (0.1 ml/well) for 1–2 days. Cells were then
pretreated with the indicated concentrations of EGCG for 2 h and

J Appl Physiol • VOL 108 • JUNE 2010 • www.jap.org

Downloaded from jap.physiology.org on June 4, 2010
Adhesion molecule expression. To determine whether EGCG could modify oxLDL-induced adhesion molecule expression, we grew HUVECs to confluence, pretreated cells with EGCG for 2 h, and stimulated cells with oxLDL (130 μg/ml) for 24 h. At the end of stimulation, HUVECs were harvested and incubated with FITC-conjugated anti-ICAM-1, anti-E-selectin, and anti-MCP-1 (R&D Systems) for 45 min at room temperature. After the HUVECs had been washed three times, their immunofluorescence intensity was analyzed by flow cytometry using a Becton Dickinson FACScan flow cytometer (Mountain View, CA).

Statistical analyses. Results are means ± SE. Differences between the groups were analyzed using one-way ANOVA followed by Student’s t-test. A P value < 0.05 was considered statistically significant.

RESULTS

Modulation of oxLDL-induced LOX-1 expression by EGCG. It has been shown that oxLDL increases LOX-1 expression (mRNA and protein) (26). Incubation of HUVECs with oxLDL (130 μg/ml) enhanced LOX-1 expression at both the gene (Fig. 1A) and protein levels (Fig. 1B). Treatment of HUVECs with EGCG for 2 h before exposure to oxLDL for 24 h resulted in suppression of LOX-1 expression in a dose-dependent manner. Notably, pretreatment with DPI, an inhibitor of ROS production, markedly inhibited oxLDL-induced LOX-1 upregulation, strongly suggesting that ROS plays a critical role in the increased expression of LOX-1.

EGCG inhibited oxLDL-induced ROS generation in HUVECs. Next, we used fluorescence microscopy to analyze the effect of EGCG on the LOX-1-mediated redox-sensitive signaling pathway in endothelial cells. The level of ROS generation in endothelial cells pretreated with EGCG (2.5–20 μM) for 2 h followed by exposure to 130 μg/ml oxLDL decreased in a dose-dependent manner (all P < 0.05) (Fig. 2, A and B). In addition, oxLDL-induced ROS was abrogated by pretreatment with monoclonal antibody of LOX-1 (anti-LOX-1 mAb) or DPI (Fig. 2B), suggesting that ROS generation, one of the earliest signals after oxLDL exposure, was largely dependent on the binding of oxLDL to LOX-1 and subsequent activation of NADPH oxidase. Intracellular ROS levels are regulated by the balance between ROS generation and the activity of antioxidant enzymes such as SOD and catalase. The H₂O₂ generated by superoxide dismutation is able to inactivate SOD, thereby increasing the imbalance in favor of oxidative stress. We therefore measured the expression levels of SOD and its isoforms in endothelial cells in response to oxLDL. Our results showed that SOD-1, but not SOD-2, expression was diminished after treatment with oxLDL for 24 h and could be significantly rescued by pretreatment with EGCG (Fig. 2, C and D).

EGCG inhibited membrane translocation of p47 phox and Rac-1. Endothelial NADPH oxidase is a major source of ROS in vascular endothelial cells, and atherogenic levels of LDL
EGCG inhibited NF-κB activation via modulation of p38 MAPK and Akt phosphorylation. OxLDL-induced ROS can activate two signal transduction pathways involving either p38 MAPK or phosphoinositide 3-kinase (PI3K), both causing NF-κB activation, which facilitates nuclear translocation and subsequent regulation of proinflammatory gene expression (9). As shown in Fig. 4A, incubation of HUVECs with oxLDL resulted in significant phosphorylation of p38 MAPK and dephosphorylation of Akt (a downstream effector of PI3K) within 30 min without affecting their protein levels; this tendency was reversed significantly with EGCG pretreatment. The inhibitor protein IκBα regulates the transcriptional activity of NF-κB p65. In resting cells, IκBα binding masks the NF-κB nuclear localization sequence, sequestering the complex in the cytosol. The key step in NF-κB nuclear translocation is mediated by degradation of cytosolic IκBα. Therefore, we used immunoblotting to examine the effect of EGCG on protein levels of NF-κB p65 and IκBα in nuclear and cytosol extracts. The results showed that in HUVECs exposed to oxLDL (130 μg/ml, 1 h), the protein levels of NF-κB p65 in the nuclear fraction increased and the levels of IκBα in cytosol decreased. In cells pretreated with EGCG (2.5–20 μM), the nuclear translocation of NF-κB p65 protein decreased in a dose-dependent manner (P < 0.05) (Fig. 4, D–F).

EGCG suppressed oxLDL-induced NF-κB-related gene products. Activation of NF-κB is a multistep process including IκB phosphorylation. Phosphorylated IκB liberates NF-κB, which is then transferred from the cytoplasm to the nucleus, where it activates the transcription of various inflammatory cytokines, genes encoding COX-2, and cell adhesion molecules. Therefore, we sought to determine whether EGCG inhibits oxLDL-induced expression of COX-2 and other inflammatory molecules. We found that COX-2 expression (Fig. 5A) and IL-8 secretion (Fig. 5B) were increased in cells exposed to oxLDL. As expected, pretreatment with EGCG significantly inhibited both COX-2 expression and IL-8 secretion in a dose-dependent manner (all P < 0.05).

EGCG ameliorated oxLDL-diminished eNOS protein expression and enhanced ET-1 secretion. OxLDL has been shown to reduce the expression of eNOS and enhance the secretion of ET-1 via ROS generation, thereby altering endothelial biology (56). We examine the effect of EGCG on the protein levels of eNOS and ET-1 secretion caused by oxLDL. Our results showed that oxLDL significantly reduced eNOS protein expression (47%, P < 0.05) (Fig. 6A) and enhanced ET-1 secretion (30.8 ± 1.2 and 72.3 ± 3.2 pg/ml for control and oxLDL, respectively, P < 0.05) in HUVECs after 24 h of incubation. This tendency was reversed significantly, however, in cells pretreated with EGCG (Fig. 6).

EGCG inhibited oxLDL-induced [Ca2+]i rise. The recent findings (43) that blockade of Ca2+ inhibits Rac-1 and p47phox activation and ROS generation in endothelial cells and that blockade of NADPH oxidase and ROS generation suppresses Ca2+ signaling prompted us to examine whether EGCG affects the level of oxLDL-induced intracellular Ca2+ in endothelial cells. As shown in Fig. 7, the basal level of intracellular Ca2+ increased in oxLDL-treated cells after 24 h, whereas EGCG significantly inhibited the oxLDL-induced rise in intracellular Ca2+ (all P < 0.05).
EGCG suppressed the oxLDL-induced adherence of THP-1 cells to HUVECs and expression of adhesion molecules. OxLDL-enhanced recruitment, retention, and adhesiveness of human monocytes and monocytic cell lines to endothelium has been implicated in the initial stage of atherogenesis (24). To test the effect of EGCG on monocyte adhesion to HUVECs, we pretreated confluent monolayers of HUVECs with various concentrations of EGCG for 2 h followed by exposure to 130 μg/ml oxLDL for 30 min. Western blot analysis was used to evaluate the expression of both phosphorylated and total p38 MAPK and Akt (A–C) after 30 min of exposure and the activation of NF-κB (D–F) after 60 min of exposure. Anti-β-actin and anti-PCNA antibodies were used for normalization of cytosolic and nuclear proteins, respectively. Values are means ± SE of 3 independent analyses. #P < 0.05 compared with untreated control HUVECs. *P < 0.05 vs. oxLDL treatment.

DISCUSSION

LOX-1 is expressed in endothelial cells, smooth muscle cells, and macrophages. It is believed to be the main receptor for oxLDL and hence to play an important role in the pathogenesis of atherosclerosis (36). The binding of oxLDL to oxLDL was subsequently examined. As shown in Fig. 8C, the expression levels of ICAM-1, E-selectin, and MCP-1 were significantly higher in HUVECs that had been treated with oxLDL (130 μg/ml) for 24 h than in the control cells (176, 490, and 262%, respectively, compared with control). Flow cytometry revealed that the induction of adhesion molecule expression was significantly ameliorated by the presence of 10 μM EGCG (all P < 0.05).
LOX-1 initiates ROS formation, which in turn upregulates LOX-1 expression, thereby contributing to further ROS generation (8). The present study is the first to show the effectiveness of EGCG, the most abundant catechin in green tea, in suppressing endothelial LOX-1 expression and LOX-1-mediated proatherogenic effects. This effect of EGCG on endothelial LOX-1 expression appears to be exerted at the transcriptional level, as reflected by the parallel decrease in LOX-1 mRNA and protein levels in EGCG-treated cells (Fig. 1). Furthermore, pretreatment with DPI or blockade of LOX-1 with anti-LOX-1 mAb prevented oxLDL-induced ROS generation, which suggests that the binding of oxLDL to LOX-1 and the consequent formation of ROS may be the first event in LOX-1-mediated endothelial dysfunction (Fig. 2). Because regulation of LOX-1 gene expression is redox sensitive (38) and involves NF-κB (14), suppression of oxLDL-induced ROS production by EGCG may contribute to the reduction of LOX-1-mediated activation of NF-κB and related expression of a number of proinflammatory molecules.

It has been shown that oxLDL-induced endothelial dysfunction is caused by an increase in NADPH oxidase-generated superoxide concentrations and a decrease in antioxidative enzyme activity (48), resulting in the activation of multiple proinflammatory molecules (Fig. 6). The effects of EGCG on endothelial nitric oxide synthase (eNOS) expression (Fig. 6A and B) and ET-1 secretion (Fig. 6C) were examined. HUVECs were pretreated for 2 h with the indicated concentrations of EGCG followed by oxLDL (130 μg/ml) for 24 h. For Western blot analyses, a monoclonal anti-eNOS antibody and a monoclonal anti-β-actin antibody (for normalization) were used. Values are means ± SE of 3 independent analyses. *P < 0.05 compared with untreated control HUVECs. #P < 0.05 vs. oxLDL treatment.

Fig. 5. Effects of EGCG on oxLDL-induced cyclooxygenase-2 (COX-2) expression (A and B) and IL-8 secretion (C) through NF-κB activation. HUVECs were pretreated for 2 h with the indicated concentrations of EGCG followed by oxLDL (130 μg/ml) for 24 h. For Western blot analyses, a monoclonal anti-COX-2 antibody and a monoclonal anti-β-actin antibody (for normalization) were used. Values are means ± SE of 3 independent analyses. *P < 0.05 compared with untreated control HUVECs. #P < 0.05 vs. oxLDL treatment.

Fig. 6. Effects of EGCG on oxLDL-induced endothelial nitric oxide synthase (eNOS) expression (A and B) and ET-1 secretion (C) caused by oxLDL. HUVECs were pretreated for 2 h with the indicated concentrations of EGCG followed by oxLDL (130 μg/ml) for 24 h. For Western blot analyses, a monoclonal anti-eNOS antibody and a monoclonal anti-β-actin antibody (for normalization) were used. Values are means ± SE of 3 independent analyses. *P < 0.05 compared with untreated control HUVECs. #P < 0.05 vs. oxLDL treatment.
ROS-sensitive signaling pathways (29). SOD protects against superoxide-mediated cytotoxicity by catalyzing \(\text{O}_2^- \) to form \(\text{H}_2\text{O}_2 \). However, \(\text{H}_2\text{O}_2 \) produced by dismutation of superoxide anion inactivates SOD-1. This process has been shown to play a key role in atherosclerosis (22). An increase in activity of SOD-1 prevents oxLDL-induced endothelial dysfunction (51). In support of findings from previous studies demonstrating that EGCG upregulates SOD-1 (28, 37), our data show that EGCG treatment significantly reduced the level of oxLDL-induced ROS generation (Fig. 2, A and B) and increased the level of SOD-1 expression (Fig. 2, C and D). We assume that EGCG protects against oxLDL-induced endothelial dysfunction by inhibiting LOX-1-mediated NADPH oxidase activation, thereby preserving \(\text{H}_2\text{O}_2 \)-inactivated SOD-1. However, whether the effect of EGCG is solely due to its antioxidant activity has not been clearly elucidated. Our finding that the membrane translocation of p47phox and Rac-1 was reduced in cells pretreated with EGCG suggests that the effect of EGCG on NADPH oxidase is mediated by modulation of the assembly of p47phox and Rac-1 on the cell membrane (Fig. 3). The beneficial effect of EGCG might be due, at least in part, to suppression of the membrane assembly of the NADPH oxidase complex.

ROS can activate two signal transduction pathways involving either p38 MAPK or PI3K, both causing NF-\(\kappa \)B activation and enabling nuclear translocation and subsequent regulation of proinflammatory molecules, including cytokines, chemokines, enzymes, and adhesion molecules (8). In the present study, ROS production in HUVECs occurred within 5 min (data not shown), and NF-\(\kappa \)B was activated within 1 h of the addition of oxLDL. These data suggest that NF-\(\kappa \)B activation follows the production of ROS in oxLDL-treated cells, which is consistent with the idea that ROS serves as a messenger of NF-\(\kappa \)B activation. Therefore, one possible mechanism by which EGCG protects against oxLDL-induced endothelial dysfunction is blockade of the LOX-1-mediated signaling pathway, in which binding of oxLDL to LOX-1 activates the NADPH oxidase subunit p47 and Rac on the cell membrane, resulting in the quick increase of intracellular ROS and the subsequent activation of NF-\(\kappa \)B via the p38 MAPK and PI3K pathways (Fig. 9).

In many vascular pathologies, a combination of altered rates of NO production along with an increased removal of NO leads to a reduction in the bioavailability of NO. The antithrombotic and antiatherosclerotic properties of NO are achieved by its ability to inhibit the expression of the cell surface adhesion molecules P-selectin, VCAM, and ICAM (25), prevent the expression of MCP-1 (58), and inhibit platelet adhesion under flow conditions (15). In normal physiology, superoxide is detoxified by the enzyme SOD, thereby preventing its interaction with NO. A recent study demonstrated that the PI3K/Akt pathway is an important upstream mediator of the NO/cGMP signals involved in the vasorelaxant action of EGCG in ophthalmic arteries (47). In the present study, we have demonstrated that EGCG ameliorated the oxLDL-diminished phos-
phorylation of Akt (Fig. 3, A and C) and increased the level of eNOS expression (Fig. 6), which contributed to the inhibition of oxLDL-induced adhesion of monocytes to HUVECs (Fig. 8, A and B). We further examined the inhibitory effects of EGCG on the oxLDL-induced surface expression of adhesion molecules in HUVECs. As expected, EGCG repressed the oxLDL-induced surface expression of these adhesion molecules (Fig. 8C). All of these findings strongly indicate that EGCG elicits antioxidative and anti-inflammatory effects. Our findings support those of previous reports demonstrating that the antioxidative effects of EGCG derive from its ability to inhibit ROS production via interaction with heme oxygenase-1 (55), thereby leading to the suppression of NADPH oxidase activation (42). With regard to the underlying mechanisms of anti-inflammatory, EGCG inhibits angiotensin II-induced adhesion molecule expression (4) and acts as a potent inhibitor of NF-κB, a key transcription factor in the expression of inflammatory cytokines (41). In addition, recent studies have shown that EGCG improves endothelium-dependent vasodilation (23) and downregulates endothelial inflammatory parameters by modulating caveolae-regulated cell signaling (59). Together, these findings suggest that EGCG might play a role in the prevention of cardiovascular diseases.

Fig. 8. Effects of EGCG on oxLDL-induced adhesion molecule expression and adhesiveness of THP-1 monocytic cells to HUVECs. Cells were incubated with the indicated concentrations of EGCG for 2 h and then incubated with oxLDL for an additional 24 h. A and B: dose-dependent effect of EGCG (2.5–20 μM) on oxLDL (130 μg/ml)-induced adhesiveness of THP-1 to HUVECs measured as described in MATERIALS AND METHODS. Values are means ± SE from 4 separate experiments. *P < 0.05 vs. oxLDL treatment. C: HUVECs were incubated with oxLDL (130 μg protein/ml) in the absence or presence of 20 μM EGCG (oxLDL + EGCG) for 24 h. The histogram of cell surface expression of ICAM-1, E-selectin, and monocyte chemoattractant protein-1 (MCP-1) was generated by flow cytometry. Values are means ± SE of 3 independent analyses. #P < 0.05 compared with untreated control HUVECs. *P < 0.05 vs. oxLDL treatment.
Pathophysiological stimuli that induce endothelial activation via NADPH oxidase-mediated ROS-induced signal transduction and alteration of intracellular Ca\(^{2+}\) ion homeostasis are now considered to be major contributors to the pathogenesis of atherosclerotic coronary artery diseases (32). NADPH oxidase reportedly affects Ca\(^{2+}\) signaling in endothelial cells (21), and Ca\(^{2+}\) signaling regulates the membrane translocation and activation of Rac-1 and p47\(^{phox}\) in response to certain agonists (45). Endothelial cells do not possess voltage-operated L-type Ca\(^{2+}\) channels. Matsui et al. (34) demonstrated that nifedipine, a Ca\(^{2+}\) channel blocker, decreased advanced glycation end product-induced MCP-1 overexpression by inhibiting ROS generation and subsequent NF-\(\kappa\)B activation via suppression of NADPH oxidase. Our study found that ROS generation was the earliest signal and that it usually occurred within 5 min after the addition of oxLDL. Therefore, we assume that the antiatherogenic effects of EGCG are due to its ability to decrease the level of ROS generation, which aids in the maintenance of [Ca\(^{2+}\)]\(_i\) in endothelial cells, thereby preventing the expression and adherence of monocytic THP-1 cells. In addition, oxLDL-induced increase in ROS preceded the increase in [Ca\(^{2+}\)]\(_i\), suggesting that the increase in intracellular Ca\(^{2+}\) induced by oxidative stress may be a consequence of free radical action on Ca\(^{2+}\) ions stored in intracellular organelles.

OxLDL-induced O\(_2^-\) formation, which occurs largely through activation of NADPH oxidase but also through uncoupling of eNOS, xanthine oxidase, and peroxisomes and through direct O\(_2^-\) release, leads to endothelial dysfunction (17). In this regard, DPI has frequently been used to inhibit ROS production mediated by various flavoenzymes, including NADPH oxidase, quinone oxidoreductase, cytochrome P-450 reductase, and NOS (7, 13, 54). In the present study, we could not completely exclude the involvement of mitochondrial complex-1, which is also inhibited by DPI. On the other hand, our study showed that low-dose (5 \(\mu\)M) EGCG prevented the oxLDL-mediated assembly of NADPH oxidase, although the levels of LOX-1 expression and ROS generation remained high. Those findings indicate that low-dose EGCG might be sensitive enough to inhibit the membrane assembly of NADPH oxidase but not sensitive enough to inhibit the expression of other ROS-generating enzymes. We propose that partial activation of LOX-1 and the subsequent activation of a ROS-sensitive downstream pathway led to adhesion molecule expression and monocytic adherence.

The concentrations of EGCG (2.5–20 \(\mu\)M) used in our study are very similar to those used by researchers who reported that EGCG blocks LPS-induced inducible NOS expression (2.5–15 \(\mu\)M) (30), inhibits TNF-\(\alpha\)-induced MCP-1 production (10–50 \(\mu\)M) (2), and inhibits oxLDL-induced endothelial apoptosis (25 \(\mu\)M) (10). In rats, the plasma concentration was reported to be as high as 12.3 \(\mu\)M at an oral dose of 500 mg/kg and 10.3 \(\mu\)M at an intravenous dose of 10 mg/kg (39). Metabolic studies in humans have shown that EGCG supplement is incorporated into plasma at a maximum concentration of 4,400 pmol/ml (40). Such concentrations would be enough to exert antioxidative activity in the bloodstream. Thus the concentrations of EGCG used in the present study are comparable to those achievable physiologically and to those used in animal studies.

In summary, EGCG prevents the oxLDL-induced LOX-1-mediated biological events that are closely linked to endothelial dysfunction. Because this is a purely in vitro work, further studies are required to confirm the extent to which EGCG inhibits oxLDL-mediated proatherogenic effects as well as the effectiveness of EGCG in vivo. Our findings add to the growing body of evidence for the beneficial effects of green tea consumption on improving cardiovascular health.
EGCG PREVENTS ox-LDL-INDUCED ENDOTHELIAL DYSFUNCTION

GRANTS

This study was supported by National Science Council Grants NSC 96-2320-B-235-001 and NSC 98-2320-B-039-020-MY3 and China Medical University Grant CMU98-N1-03, and Taiwan Department of Health Clinical Trial and Research Center of Excellence (DDHPPTD-B-111-004) Taiwan, Republic of China.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES

