Curcumin Inhibits Human Lung Large Cell Carcinoma Cancer Tumour Growth in a Murine Xenograft Model

Chin-Cheng Su,† Jai-Sing Yang,‡ Chi-Cheng Lu,§ Jo-Hua Chiang, Chang-Lin Wu, Jen-Jyh Lin, Kuang-Chi Lai, Te-Chun Hsia, Hsu-Feng Lu, Ming-Jen Fan, and Jing-Gung Chung*

1Division of General Surgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien 970, Taiwan
2Department of Pharmacology, China Medical University, Taichung 404, Taiwan
3Department of Life Sciences, National Chung Hsing University, Taichung 402 Taiwan
4Departments of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
5Division of Cardiology, China Medical University Hospital, Taichung 404, Taiwan
6Department of Medicine, China Medical University Hospital, Taichung 404, Taiwan
7Department of Surgery, China Medical University Beigang Hospital, Beigang Township, Yunlin 651, Taiwan
8Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
9Department of Clinical Pathology, Cheng Hsin Rehabilitation Medical Center, Taipei 112, Taiwan
10College of Human Ecology, Fu-Jen University, Taipei 510, Taiwan
11Department of Biotechnology, Asia University, Taichung 431, Taiwan

Published online 13 January 2010 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/ptr.2905

INTRODUCTION

In Taiwan, about 32.8 and 32.5 persons per 100 thousand die annually from lung and liver cancer respectively, based on reports from the People’s Health Bureau of Taiwan in year 2006 (Department of Health, Executive Yuan, R.O.C. (Taiwan) Taipei; http://www.doh.gov.tw/EN2006/index_EN.aspx.). Currently, the treatment of these cancers involves radiotherapy, chemotherapy, or a combination of both, but mortality in both types of cancer patient remains high. Many studies have shown that certain phytochemicals can act as chemopreventive or chemotherapeutic agents in human cancer and many prescription drugs in use for cancer treatment are derived from plants (Craig, 1997; Kucuk, 2002).

Curcumin (diferuloylmethane), a phenolic compound obtained from turmeric, the rhizome of Curcuma longa (L.), is commonly used in food (Huang et al., 1998). It has been reported that curcumin inhibits cell proliferati-

* Correspondence to: Jing-Gung Chung, Department of Biological Science and Technology, China Medical University, No 91, Hsueh-Shih Road, Taichung 404, Taiwan.
E-mail: jgchung@mail.cmu.edu.tw (J.-G. Chung)
†Both authors contributed equally.

Keywords: curcumin; human lung NCI-H460 cancer cells; xenograft transplantation; in vivo.

Curcumin can decrease viable cells through the induction of apoptosis in human lung cancer NCI-H460 cells in vitro. However, there are no reports that curcumin can inhibit cancer cells in vivo. In this study, NCI-H460 lung tumour cells were implanted directly into nude mice and divided randomly into four groups to be treated with vehicle, curcumin (30 mg/kg of body weight), curcumin (45 mg/kg of body weight) and doxorubicin (8 mg/kg of body weight). Each agent was injected once every 4 days intraperitoneally (i.p.), with treatment starting 4 weeks after inoculation with the NCI-H460 cells. Treatment with 30 mg/kg and 45 mg/kg of curcumin or with 8 mg/kg of doxorubicin resulted in a reduction in tumour incidence, size and weight compared with the control group. The findings indicate that curcumin can inhibit tumour growth in a NCI-H460 xenograft animal model in vivo. Copyright © 2010 John Wiley & Sons, Ltd.

MATERIALS AND METHODS

Chemicals. Curcumin and dimethyl sulfoxide (DMSO) were obtained from Sigma Chemical (St Louis, MO, USA).

Cell culture. Human lung large cell carcinoma cancer NCI-H460 cells were obtained from the Food Industry
Research and Development Institute (Hsinchu, Taiwan), and maintained at 37 °C in a humidified 5% CO2 and 95% air in RPMI-1640 medium (Gibco-BRL, Grand Island, NY, USA) supplemented with 10% FBS (Hyclone Laboratories, Logan, UT, USA), 1% penicillin–streptomycin (100 units/mL, penicillin and 100 μg/mL streptomycin) and 2 mM l-glutamine.

In vivo NCI-H460 tumour xenograft model. Female athymic nude (BALB/c nu/nu mice) were obtained from Laboratory Animal Center of National Applied Research Laboratories (Taipei, Taiwan). All animals were maintained in standard vinyl cages with air filter tops in a filtered laminar air flow room at 25 °C on a 12 h light/dark cycle; water and food were autoclaved and provided. The experimental design for this study is shown in Fig. 1.

NCI-H460 cells (1 × 10⁷) in RPMI-1640 medium were injected subcutaneously into the flanks of mice. Tumour-bearing mice were then divided randomly into treatment groups (six mice per group) and treatment initiated when the xenografted solid tumours reached a volume of about 100 mm³. Each mouse was injected i.p. every 3 days with either 30 μL of control vehicle (DMSO), curcumin (30 and 45 mg/kg) or doxorubicin (8 mg/kg). All experiments were conducted according to institutional guidelines and approved by the Animal Care and Use Committee of the China Medical University, Taichung, Taiwan. The doses of curcumin (30 and 45 mg/kg) used here are close to those used in other reports, for example human PC-3 prostate cancer (Khor et al., 2006) and pancreatic cancer (Kunnumakkara et al., 2007) xenografts in immunodeficient mice.

After xenograft transplantation, mice exhibiting tumours were monitored and tumour size was measured once every 3 days using calipers. The tumour volume in each animal was estimated according to the formula: tumour volume (mm³) = L × W²/2 (where L is the length and W is the width) with the final measurement taken 4 weeks after tumour cell inoculation. At the same time, the body weight of each animal was measured once every 3 days, although they were more frequently checked during the first 3 weeks to monitor potential drug-related toxicity. At the end of the experiment (4 weeks after cell inoculation), the animals were anaesthetized by CO₂ and killed. Tumours from each animal were removed, measured and weighed individually (Kuo et al., 2006; Yang et al., 2008).

Statistical analysis. Each value represents mean ± SD. The control and experimental animal groups were compared by Student’s t-test. ***p < 0.001 was considered significant.

RESULTS AND DISCUSSION

The results indicated that curcumin and doxorubicin decreased tumour size significantly. An illustration of a representative animal treated with curcumin relative to the control is shown in Fig. 2A. Curcumin treatment decreased significantly both tumour volume (Fig. 2B) and tumour weight (Fig. 2C) compared with the control. The percentage inhibition of each is shown in Table 1. None of the treatments, i.e. vehicle (DMSO), 30 mg/kg curcumin, 45 mg/kg curcumin or 8 mg/kg doxorubicin, altered the body weight significantly (data not shown). All tumours appeared only at the inoculation sites.

Based on these in vivo experiments, it can be seen that curcumin at 30 mg/kg can inhibit tumour growth in a NCI-H460 xenograft mice model. However, other investigators have shown that in human clinical trials, curcumin can safely be administered at doses up to 10 g/day. When given at 8 g/day, the serum concentration of curcumin was 1.77 ± 1.87 μmol/L, and there was no indication of dose-limiting toxicity (Cheng et al., 2001). In the present study, serum concentrations of curcumin

Table 1. Inhibitory effect of curcumin on growth of H460 tumour xenografts in BALB/cnu/nu mice

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Tumour weight (g)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.097</td>
<td>–</td>
</tr>
<tr>
<td>Curcumin 30 mg/kg</td>
<td>0.076</td>
<td>21.60</td>
</tr>
<tr>
<td>Curcumin 45 mg/kg</td>
<td>0.066*</td>
<td>31.96</td>
</tr>
<tr>
<td>Doxorubicin 8 mg/kg</td>
<td>0.028*</td>
<td>71.13</td>
</tr>
</tbody>
</table>

Doxorubicin and curcumin groups were compared and analysed using Student’s t-test. *p < 0.001.
CURCUMIN INHIBITS THE GROWTH OF LUNG CANCER NCI-H460 CELLS IN VIVO

191

and its metabolites were not measured, but despite the low bioavailability of curcumin, tumours in mice that received curcumin alone were about 55% smaller than those of the control group (Fig. 2B).

Even in the curcumin treatment (30 and 45 mg/kg) and doxorubicin (8 mg/kg) groups, tumours continued to grow slowly compared with the control group, indicating that complete regression of NCI-H460 cells xenografts was not achieved using a single treatment agent, suggesting that multiple treatments may be necessary to achieve a complete response. However, several recent reports have shown that combinations of curcumin with other agents can produce enhanced effects. Curcumin and genistein show synergistic inhibitory effects on the growth of human breast cancer MCF-7 cells induced by estrogenic pesticides (Verma et al., 1997), and curcumin and phenethyl isothiocyanates, either alone or in combination, possess significant cancer-preventive activities in the PC-3 prostate tumour xenografts (Khor et al., 2006). Curcumin potentiates the antitumour effects of gemcitabine in pancreatic cancer by suppressing proliferation, angiogenesis, NF-xB and NF-xB-regulated gene products (Kunnumakkara et al., 2007). A combination of curcumin and light therapy increases the efficacy of curcumin in a human epithelial carcinoma A431 xenograft tumour model (Dujic et al., 2009) and offers a new therapeutic concept. The present study provides the first report of the efficacy of curcumin against tumours in an in vivo xenograft of human lung cancer NCI-H460 cells in mice.

Acknowledgement

This work was supported by grant CMU96-086 from the China Medical University and grant NSC95-2745-B-039-002-URD from the National Science Council, Taiwan.

REFERENCES

Huang MT, Lou YR, Xie JG et al. 1998. Effect of dietary curcumin and dibenzoylmethane on formation of 7,12-

Copyright © 2010 John Wiley & Sons, Ltd.

