Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine

Zhi-Ye Zhuang, Yasuhiko Kawasaki, Ping-Heng Tan, Yeong-Ray Wen, Jing Huang, Ru-Rong Ji *

Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Medical Research Building, Room 604, Boston, MA 02115, USA

Received 27 August 2006; received in revised form 31 October 2006; accepted 1 November 2006
Available online 15 December 2006

Abstract

Accumulating evidence suggests that microglial cells in the spinal cord play an important role in the development of neuropathic pain. However, it remains largely unknown how glia interact with neurons in the spinal cord after peripheral nerve injury. Recent studies suggest that the chemokine fractalkine may mediate neural/microglial interaction via its sole receptor CX3CR1. We have examined how fractalkine activates microglia in a neuropathic pain condition produced by spinal nerve ligation (SNL). SNL induced an upregulation of CX3CR1 in spinal microglia that began on day 1, peaked on day 3, and maintained on day 10. Intrathecal injection of a neutralizing antibody against CX3CR1 suppressed not only mechanical allodynia but also the activation of p38 MAPK in spinal microglia following SNL. Conversely, intrathecal infusion of fractalkine produced a marked p38 activation and mechanical allodynia. SNL also induced a dramatic reduction of the membrane-bound fractalkine in the dorsal root ganglion, suggesting a cleavage and release of this chemokine after nerve injury. Finally, application of fractalkine to spinal slices did not produce acute facilitation of excitatory synaptic transmission in lamina II dorsal horn neurons, arguing against a direct action of fractalkine on spinal neurons. Collectively, our data suggest that (a) fractalkine cleavage (release) after nerve injury may play an important role in neural–glial interaction, and (b) microglial CX3CR1/p38 MAPK pathway is critical for the development of neuropathic pain.

Keywords: Chemokine; MAP kinase; Microglia; Spinal cord; Neural–glial interaction; Spinal nerve ligation; Intracellular signaling; Neuropathic pain

1. Introduction

Chronic pain resulting from nerve damage can be intractable. Analgesic drugs used for treating acute pain are not very effective for neuropathic pain, in part due to our incomplete understanding of the mechanisms underlying the development and maintenance of neuropathic pain. Increasing evidence shows that spinal microglia are activated after nerve injury and contribute to the development of neuropathic pain. Nerve injury induces the expression of microglial markers (e.g., CD11b; TLR4, CD14) within several hours (DeLeo et al., 2004). Microglia are regarded as a major source for the production of proinflammatory cytokines (Hanisch, 2002; Koistinaho and Koistinaho, 2002) that are implicated in pain facilitation (DeLeo and Yezierski, 2001; Watkins et al., 2001). Nerve injury upregulates several receptors, such as the chemokine receptors CCR2 and CX3CR1 and the ATP receptor P2X4 in spinal microglia; blocking or deleting these receptors results in decreased neuropathic pain (Abbadie et al., 2003; Tsuda et al., 2003, 2005; Milligan et al., 2004; Verge et al., 2004). A microglial inhibitor minocycline has been shown to prevent/delay neuropathic pain (Raghavendra et al., 2003; Ledeboer et al., 2005) and to attenuate a central neuropathic pain after spinal cord injury (Hains and Waxman, 2006).
Nerve injury also induces a drastic activation (phosphorylation) of p38 mitogen-activated protein kinase (MAPK) in the spinal cord (Jin et al., 2002; Kim et al., 2002; Schafers et al., 2003). Surprisingly, p38 is not activated in spinal neurons (Ji et al., 2002b). Instead, p38 is activated in spinal cells labeled with OX-42, a marker for microglia, following nerve injury (Jin et al., 2003; Tsuda et al., 2004). In addition to nerve injury, p38 is rapidly activated in spinal microglia in other pain conditions (Svensson et al., 2003; Sweitzer et al., 2004). Several lines of evidence indicate that p38 activation plays an important role in the development of neuropathic pain. Intrastrachal administration of the p38 inhibitors was shown to attenuate neuropathic pain symptoms (Jin et al., 2003; Milligan et al., 2003; Schafers et al., 2003; Obata et al., 2004; Tsuda et al., 2004). Therefore, p38 phosphorylation in microglia could serve as a pain-related marker for microglial activation in the spinal cord. Although several studies began to explore the upstream mechanisms responsible for p38 activation in spinal microglia (Svensson et al., 2005; Sung et al., 2005), these mechanisms are still illusive.

Glial cells are believed to regulate pain sensitivity through interacting with neurons. However, little is known about how neural information is conveyed from periphery to spinal glia after peripheral nerve injury. The chemokine fractalkine (also called CXCL1) appears to be an ideal candidate to mediate neural/glial interaction, because (a) fractalkine is produced in neurons of the dorsal root ganglion (DRG) and the spinal cord (Verge et al., 2004; Lindia et al., 2005), and (b) the sole receptor of fractalkine, CX3CR1 is expressed in microglia and required for neuropathic pain facilitation (Milligan et al., 2004; Verge et al., 2004; Lindia et al., 2005). In this study, we show that nerve injury cleaves fractalkine and that CX3CR1 contributes to the development of neuropathic pain by activating p38 in spinal microglia.

2. Methods

2.1. Animals and surgery

Male adult Sprague-Dawley rats (200–260 g) were used under Harvard Medical School Animal Care institutional guidelines. The animal room was artificially illuminated from 7:00 am to 7:00 pm. The rats were anesthetized with sodium pentobarbital (40–50 mg/kg, i.p.). To produce spinal nerve ligation (SNL), the L5 transverse process was removed to expose the L4, L5 spinal nerves. The L5 spinal nerve was then isolated and tightly ligated with 6–0 silk thread (Kim and Chung, 1992).

2.2. Reagents and intrathecal infusion

Fractalkine was purchased from R&D Systems (Minneapolis) and infused intrathecally via an osmotic pump. Laminctomy was performed under microscope at the spinal level 2 cm below the lumbar enlargement (Ji et al., 2002a). A polyethylene (PE5) catheter was implanted into the intrathecal space of the spinal cord (L4-L5 spinal level). The catheter was connected to an osmotic pump (Alzet) for spinal infusion of fractalkine (3 ng/μl/h for 48 h). The dose was chosen according to a previous study (Milligan et al., 2004).

The neutralizing antibody against rat CX3CR1 was purchased from Torrey Pines Biolabs (1 mg/ml Houston) and the control rabbit IgG from Sigma. For a single intrathecal infusion, a spinal cord puncture was made with 27G needle between L5 and L6 level to deliver the drug and vehicle to the cerebral spinal fluid (CSF) space around lumbosacral spinal cord (Zhuang et al., 2005, 2006). Animals were briefly anesthetized with sevoflurane before the puncture and 20 μl of liquid (antiserum or control serum) was injected with a microsyringe. Immediately after the needle entry into subarachnoid space (change in resistance), a brisk tail-flick was observed.

2.3. Western blotting

Animals were rapidly sacrificed on post-SNL day 1, 3, and 10 in an isoflurane chamber (3–4 rats per group). The L5 dorsal horns were rapidly removed and frozen on dry ice (Zhuang et al., 2005). The dorsal horn tissues were homogenized with a hand-held pestle in a SDS sample buffer (10 μg/ml tissue) containing a cocktail of proteinase inhibitors and phosphatase inhibitors (Sigma, Zhuang et al., 2005). Protein samples (30 μg) were separated on SDS-PAGE gel (4–15% gradient mini-gel, Bio-Rad) and transferred to PVDF filters (Millipore). The blots were blocked with 5% milk in PBS with 0.1% Tween-20 for 1 h at room temperature (RT) and incubated overnight at 4 °C with polyclonal anti-CX3CR1 antibody (Torrey Pines Biolabs, anti-rabbit, 1:1000, in 5% BSA) or fractalkine antibody (Torrey Pines Biolabs, anti-rabbit, 1:1000). The blots were then incubated for 1 h at RT with HRP-conjugated secondary antibody (Amersham, 1:5000), developed in ECL solution (NEN) for 1 min, and exposed onto hyperfilms (Amersham) for 1–30 min. Some blots were further stripped in a buffer (67.5 mM Tris, pH 6.8, 2% SDS, 0.7% β-mercaptoethanol) for 30 min at 50 °C and re-probed with ERK2 antibody (1:3000, Cell Signaling) as loading control, since ERK2 levels do not change after tissue and nerve injury (Ji et al., 2002a; Zhuang et al., 2005). Specific bands were evaluated by apparent molecular size and positive control. They were also tested in previous studies (Chapman et al., 2000, Meucci et al., 2000).

2.4. Immunohistochemistry

After defined survival times (1, 2, 3, and 10 days after SNL, or 2 days after CX3CR1 antibody or fractalkine infusion), animals were terminally anesthetized with isoflurane and perfused through the ascending aorta with saline followed by 4% paraformaldehyde with 1.5% picric acid in 0.16 M PB (pH 7.2–7.4, 4 °C; Ji et al., 1994). After the perfusion fixation, the L5 spinal cord segments were removed and postfixed in the same fixative overnight, then replaced with 15% sucrose overnight. Transverse spinal sections (free-floating, 30 μm) were cut in a cryostat and processed for immunofluorescence (Jin et al., 2003). All the sections were blocked with 2% goat serum in 0.3% Triton for 1 h at RT and incubated overnight at 4 °C with anti-CX3CR1 antibody (anti-rabbit, 1:1000; Torrey Pines Biolabs) or p-p38 antibody (anti-rabbit, 1:500, Cell Signaling). The sections were then incubated for 1 h at RT with Cy3-conjugated secondary antibody (1:300, Jackson Immunolab). For double immunofluorescence, spinal sections were incubated with a mixture of polyclonal CX3CR1 antibody and monoclonal GFAP antibody (1:5000, Chemicon) or OX-42 antibody (Serotec, 1:5000) overnight at 4 °C, followed by a mixture of FITC- and CY3-conjugated secondary antibodies for 1 h at RT. The stained sections were examined with a Nikon fluorescence microscope, and images were captured with a CCD Spot camera. The specificity of the staining or antibodies was tested in previous studies (Jin et al., 2003; Verge et al., 2004; Lindia et al., 2005). Those cells with distinct contrast to the background were scored as positive and counted in a blinded-manner. The number of p-p38-immunoreactive (IR) cell profiles was quantified from six non-adjacent spinal sections (30 μm) randomly selected from the L5 spinal segments. The region of the spinal cord sampled was the medial two thirds of the dorsal horn (laminae I-III), which was captured under 20× objective in a square box (450 × 338 μm, Kawasaki et al., 2004).

2.5. Behavioral analysis

Animals were habituated to the testing environment daily for at least two days before baseline testing. The room temperature and humidity remained stable for all experiments. For testing mechanical sensitivity,
animals were put in a plastic box (11 × 13 × 24 cm) on an elevated metal mesh floor and allowed 30 min for habituation. Mechanical paw withdrawal thresholds (PWT) were determined using the methods described by Chaplan et al. (1994). The hindpaw was pressed with one of series von Frey hairs with logarithmically incremental stiffness (0.6, 1, 1.4, 2, 4, 6, 8, 10, 15, and 26 g, Stoelting; see Zhuang et al., 2006), presented perpendicularly to the plantar surface for 4–5 s for each hair. The 50% withdrawal threshold was determined using the up-down method of Dixon (1980). We only tested the left hindpaws, which are ipsilateral to nerve injury.

2.6. Spinal cord slice preparation and patch clamp recordings

A portion of the lumbar spinal cord (L4–L5) was removed from adult rats (200 g) under urethane anesthesia (1.5–2.0 g/kg, i.p.), and kept in pre-oxygenated ice-cold Krebs solution. Spinal segments were placed in a shallow groove formed in an agar block and glued to the bottom of the microslicer stage with cyanoacrylate adhesive. Transverse slices (600 μm) were cut on a vibrating microslicer. The slices were perfused with Kreb’s solution saturated with 95% O2 and 5% CO2 at 36 °C for 3 h before drug stimulation (Kawasaki et al., 2004, 2006).

The whole cell patch-clamp recordings were made from lamina II neurons in voltage clamp mode (Baba et al., 2003; Kohno et al., 2005). Under a dissecting microscope with transmitted illumination, the substantia gelatinosa (SG, lamina II) is clearly visible as a relatively translucent band across the dorsal horn. Patch pipettes were fabricated from thin-walled, borosilicate, glass-capillary tubing (1.5 mm o.d., World Precision Instruments). After establishing the whole-cell configuration, voltage clamped neurons were held at −70 mV for recording spontaneous excitatory postsynaptic current (sEPSC). The resistance of a typical patch pipette is 5–10 MΩ, when filled with the internal solution. The pipette solution contains (in mM): K-glucuronate 135, KCl 5, CaCl2 0.5, MgCl2 2, EGTA 5, Hepes 5, TEA 5, and ATP-Mg salt 5. Membrane currents were amplified with an Axopatch 200A amplifier (Axon Instruments) in voltage-clamp mode. Signals were filtered at 2 kHz and digitized at 5 kHz. Data were stored with a personal computer using pCLAMP 6 software and analyzed with Axograph 4.0 (Axon Instruments).

2.7. Statistics

All the data are expressed as means ± SEM. Differences between groups were compared by Student’s t-test or ANOVA followed by Fisher’s PLSD post hoc analysis (SPSS 10.0 for Window). The criterion for statistical significance was P < 0.05.

3. Results

3.1. Spinal nerve ligation (SNL) increases CX3CR1 expression in spinal microglia

Western blot analysis revealed a specific band (∼40 kDa) in the spinal cord dorsal horn using a CX3CR1 antibody (Fig. 1a). This band was also reported in the brain using the same antibody (Meucci et al., 2000). The intensity of this CX3CR1 band significantly increased after ligation of the L5 spinal nerve (F(3,8) = 8.807, P = 0.0065, ANOVA). This increase began on day 1, peaked on day 3, and maintained on day 10 after SNL (Fig. 1b). Immunohistochemistry confirmed an upregulation of CX3CR1 after nerve injury. Many more CX3CR1-immunoreactive (IR) cells were found in the ipsilateral spinal cord after nerve injury. Although most positive cells were found in the superficial (laminae I-III) dorsal horn, many positive cells were also seen in the ventral horn and in the area around the central canal (Fig. 1c). Sham surgery did not produce significant change of CX3CR1 expression in the spinal cord (data not shown). Although CX3CR1 upregulation was predominantly found in the ipsilateral spinal cord, a moderate increase in the contralateral superficial dorsal horn (lamina II) was also evident (Fig. 1c).

Double labeling indicated that CX3CR1-IR cells were exclusively microglia, since they also co-expressed the microglial marker OX-42 on both day 2 (Figs. 2a–c) and day 10 (Fig. 2g). In contrast, CX3CR1 was not expressed in astrocytes, because this receptor did not colocalize with the astroglial marker GFAP (Fig. 2f).

3.2. CX3CR1 upregulation contributes to the development of neuropathic pain

To test whether CX3CR1 upregulation has any role in pain hypersensitivity after SNL, we applied a single injection...
of a neutralizing antibody against CX3CR1 (10 μg, Milligan et al., 2004) into the spinal CSF space by lumbar puncture before surgery and tested mechanical allodynia on day 1 and 2 post-SNL. L5 SNL induced a rapid and marked mechanical allodynia; mechanical thresholds decreased by 80% on day 1 and 2 (Fig. 3). Intrathecal injection of the vehicle (control serum) did not affect mechanical allodynia. However, CX3CR1 neutralizing antibody, injected 30 min before the nerve injury, significantly reduced mechanical allodynia on day 1 and 2 (P < 0.01, t-test, Fig. 3).

3.3. CX3CR1 is required for p38 activation in the spinal cord after SNL

Although sham surgery produced a slight increase in p-p38 levels compared to naïve control, SNL induced a very dramatic increase in p-p38 levels. Numerous p-p38-IR cells were found in the spinal cord, especially in the superficial laminae (I-III) (Fig. 4a and b). As we have previously shown (Jin et al., 2003), p-p38 was only expressed in OX-
42-IR spinal microglia. Furthermore, SNL-induced p-p38 increase was significantly suppressed by pre-treatment of the neutralizing CX3CR1 antibody (Fig. 4d, \(P < 0.05 \), t-test). The degree of inhibition of p-p38 was correlated well with that of mechanical allodynia on post-SNL day 2 following the same treatment (Figs. 3 and 4d).

3.4. Spinal infusion of fractalkine activates p38 in microglia and induces mechanical allodynia

To determine whether the CX3CR1 ligand fractalkine can activate p38 in the spinal cord, we continuously infused fractalkine intrathecally for 2 days via an osmotic pump, at the flow rate of 1 \(\mu l/h \). This infusion (72 ng fractalkine per day) induced a 4-fold increase in spinal p-p38 levels (Fig. 5a–d, \(P < 0.01 \), compared with saline control, t-test). p38 was still activated in spinal microglia after fractalkine infusion (Fig. 5c). In parallel, this infusion also induced marked mechanical allodynia on both day 1 and 2 (Fig. 6).

3.5. SNL induces cleavage of fractalkine in the injured dorsal root ganglion

It is believed that membrane-bound fractalkine must be cleaved before its release (Chapman et al., 2000; Hundhausen et al., 2003). To determine whether nerve injury induces a cleavage of this chemokine, we examined the expression of membrane-bound and soluble (secreted) forms of fractalkine using Western analysis. In the non-injured conditions, fractalkine in the DRG had two forms, a large form (\(\approx 100 \) kDa) and a small form (\(\approx 80 \) kDa), corresponding to membrane-bound and soluble form, respectively, as shown in other tissues (Chapman et al., 2000; Hundhausen et al., 2003). One day after nerve injury, the large form was almost lost in the injured L5 DRG (Fig. 7a). The average intensity of the Western band one day after SNL was only 24 \(\pm 3\% \) of that of the sham control DRG (\(P < 0.01 \), t-test, \(n = 3 \)), indicating a marked cleavage of fractalkine by SNL (Fig. 7b). There appeared to be an increase of the soluble fractalkine (band 2, Fig. 7a) in the DRG after nerve injury. This 80 kDa band was weaker, because it could be released to the CSF and barely remained in the DRG.

3.6. Fractalkine does not acutely change excitatory synaptic transmission in dorsal horn neurons in isolated spinal slices

To determine whether fractalkine has any acute effect on synaptic transmission in the spinal cord, we conducted patch clamp recording in lamina II neurons of the isolated spinal cord slices and examined whether fractalkine could affect spontaneous excitatory synaptic currents (sEPSC). Bath application of fractalkine to spinal slices for 5 min had no effect on sEPSCs (Fig. 8a–c). Neither frequency nor amplitude of sEPSC was altered during...
and after fractalkine perfusion (Fig. 8a–e) at concentrations (2 and 20 ng/ml) that are effective to activate ERK/MAPK in spinal cells (data not shown).

4. Discussion

There are several novel findings of this study. First, we show that fractalkine/CX3CR1 is essential for p38 activation after spinal nerve ligation (SNL). Second, we demonstrate that fractalkine in the injured DRG is cleaved after SNL. Third, we show that fractalkine does not produce rapid facilitated of excitatory synaptic transmission in spinal lamina II neurons. We also show in the SNL model that CX3CR1 is induced in spinal microglia and that this receptor is required for neuropathic pain development. Although CX3CR1 upregulation in spinal microglia has been reported by Watkins’ group in the chronic constriction injury (CCI) model and sciatic inflammatory neuropathy model (SIN) model of neuropathic
4.1. p38 activation in spinal microglia and neuropathic pain

Accumulating evidence suggests that microglial cells in the spinal cord play a crucial role in facilitating pain states. However, studies on microglial regulation of pain are hampered by the lack of functional marker for microglial activation. In last several years, different laboratories have shown that p38 is activated in spinal microglia under different pain conditions. Importantly, p38 activation also contributes to the development of pain hypersensitivity (Jay et al., 2002b; Kim et al., 2002; Jin et al., 2003; Svensson et al., 2003, 2005; Tsuda et al., 2004; Cui et al., 2006; Piao et al., 2006). Therefore, p38 activation (phosphorylation) could serve as a marker for microglial activation in the spinal cord under different pain conditions. This marker is also an essential signaling molecule in microglia for pain regulation (Ji and Strichartz, 2004). Minocycline, a microglial inhibitor, is believed to suppress inflammatory and neuropathic pain by inhibiting p38 activation (Hua et al., 2005; Hains and Waxman, 2006). Several studies began to explore the upstream mechanisms causing p38 activation in spinal microglia. For example, p38 was activated in spinal microglia by spinal substance P (Svensson et al., 2003), TNF-α (Svenssen et al., 2005), and IL-1β (Sung et al., 2005). Compared with other pain conditions, nerve injury induces much stronger p38 activation in spinal microglia. We propose that fractalkine is likely to convey signal from neurons to glia by activating p38 in spinal microglia.

It remains to be investigated how p38 activation in spinal microglia contributes to pain sensitization. Upon activation, microglia produce proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 (Hanisch, 2002; Koistinaho and Koistinaho, 2002). p38 activation is implicated in the synthesis of these cytokines (reviewed Ji and Strichartz, 2004). SNL-induced spinal synthesis of IL-1β is suppressed by p38 inhibitor (Zhuang and Ji, unpublished observation). IL-1β may facilitate pain by enhancing excitatory synaptic transmission in dorsal horn neurons (Kawasaki and Ji, 2006) and inducing the expression of COX-2 in the spinal cord (Samad et al., 2001). p38 may also regulate the expression of other genes (e.g., P2X4, CX3CR1) that are upregulated in spinal microglia after nerve injury. Additionally, p38 can acutely induce the synthesis of PGE2 via activation of phospholipase A2 (Yaksh et al., 2006).

4.2. CX3CR1 upregulation in spinal microglia and neuropathic pain

We have shown that nerve injury upregulates CX3CR1 in spinal microglia using the SNL model. Our results are consistent with previous studies in the CCI, SIN, and SNL model (Verge et al., 2004; Lindia et al., 2005). However, our study has included additional characterization of CX3CR1 upregulation. First, Western blotting analysis indicated a time course of the upregulation. This upregulation was rapid and was already significant after one day. Although declined from the peak, the upregulation was still evident after 10 days. Second, we have shown that CX3CR1 is exclusively expressed in microglia at different times (2 and 10 days) of nerve injury. CX3CR1 upregulation was widespread and could be found all over the dorsal and ventral horn, but still restricted to the ipsilateral spinal cord. The same distribution pattern after SNL has also been observed for other microglial molecules, such as OX-42 and p-p38 (Jin et al., 2003). This is in part due to the fact that L5-SNL produces more severe nerve damage in the L5 segment than other neuropathic pain models with peripheral nerve injury. However, the site that shows most CX3CR1 upregulation is the superficial dorsal horn. It may not be necessary for microglia to be anatomically close to nociceptive neurons. The mediators produced by microglia could be diffused to affect nociceptive neurons.

In support of a previous study by Milligan et al. (2004), we have shown that CX3CR1 upregulation is required for neuropathic pain development in the SNL model. Since we only tested pain behavior in the first 2 days after SNL, this study focused on the induction mechanism of neuropathic
pain. However, CX3CR1 neutralizing antibody was shown to reverse neuropathic pain when given several days after injury (Milligan et al., 2004). Therefore, CX3CR1 is also involved in the maintenance of neuropathic pain. However, whether CX3CR1 is still important for late maintenance (e.g., >3 weeks) of neuropathic pain remains unclear.

In particular, we have shown that CX3CR1 upregulation is essential for the activation of p38 in spinal microglia after SNL. We have also shown that intrathecal fractalkine infusion activates p38 in spinal microglia and induces mechanical allodynia. Therefore, it is likely that activation of p38 is an underlying mechanism for CX3CR1 to regulate neuropathic pain. In addition, activation of CX3CR1 receptor may also facilitate pain via inducing the release of IL-1β (Johnston et al., 2004).

4.3. Fractalkine’s expression, cleavage, and spinal action

Fig. 8. Fractalkine does not produce acute effect on synaptic transmission in the spinal cord. (a) Patch clamp recording in lamina II neurons of the isolated spinal cord slices shows spontaneous excitatory synaptic current (sEPSC) before, during, and after bath application of fractalkine (20 ng/ml, 5 min). (b and c) High magnification shows sEPSC before (a) and after (b) fractalkine (20 ng/ml) application. (d and e) Effects of fractalkine on the frequency (d) and amplitude (e) of mEPSC. Data are presented as the ratio of pre-treatment value. P > 0.05, paired t-test, n = 3.

Our Western analysis shows that fractalkine is heavily expressed in the DRG. Unlike its receptor, fractalkine is expressed in neurons including primary sensory neurons in the DRG and spinal neurons (Verge et al., 2004; Lindia et al., 2005). Fractalkine is also expressed in spinal astrocytes after nerve injury (Lindia et al., 2005).

Fractalkine has two forms, a membrane-bound form (large size) and a soluble, secreted form (small size). These two forms mediate cell adhesion and chemotaxis, respectively (Hundhausen et al., 2003). Chapman et al. (2000) have shown that membrane-bound fractalkine in cortical neurons is cleaved and liberated in response to glutamate-induced neuronal hyperactivity and toxicity. Consistently, our data show that fractalkine in the DRG also has two forms, a membrane-bound form and a secreted form. Importantly, we have shown for the first time that membrane-bound fractalkine is rapidly lost after nerve injury in the injured DRG, indicating a cleavage of this chemokine. The cleaved fractalkine could be rapidly released into CSF, thus, difficult to be detected in the DRG samples. Metalloproteinases, such as disintegrin-like metalloproteinase ADAM10, are implicated in the cleavage of membrane fractalkine (Chapman et al., 2000; Ludwig et al., 2002; Hundhausen et al., 2003).

Our electrophysiological data show that fractalkine does not produce acute effect on excitatory synaptic transmission in lamina II dorsal horn neurons, arguing against a direct effect of this chemokine on dorsal horn neurons. This funding supports the notion that fractalkine receptor (CX3CR1) is not expressed in neurons in the spinal cord.
However, caution must be taken, since we only tested lamina II neurons. We cannot exclude the possibility that fractalkine may directly act on other dorsal horn neurons such as lamina V neurons that receive input from A-beta fiber responsible for signaling light touch. Although fractalkine may not produce direct activation of dorsal horn neurons via glial–neural interaction, which is supported by a recent electrophysiological study (Owolabi and Saab, 2006). It is also consistent with the finding that intrathecal fractalkine induces delayed pain behavior that manifests after 40 min (Milligan et al., 2004). Fractalkine was shown to induce IL-1β release from isolated spinal cord (Johnston et al., 2004). It is likely that fractalkine acts on CX3CR1 receptor to release IL-1β from spinal microglia, which then produces delayed activation/sensitization of dorsal horn neurons, leading to pain hypersensitivity. Interestingly, a recent study shows that IL-1β release in the spinal cord requires p38 activation (Clark et al., 2006).

4.4. Concluding remarks

It is becoming generally accepted that glial cells in the spinal cord play important roles in the generation of pathological pain states, such as neuropathic pain. Glial cells must interact with neurons in order to regulate pain sensitivity (Ji and Wen, 2006). Fractalkine is a unique chemokine that plays an important role in mediating neural–glial interaction. We find that fractalkine produces no acute facilitation of excitatory synaptic transmission of dorsal horn neurons. We also find that SNL induces a marked cleavage of fractalkine in the DRG. Upon release, this chemokine can bind to its upregulated CX1CR1 receptor in spinal microglia, leading to the activation of p38 MAPK. We suggest that the CX3CR1/p38 cascade contributes to the development of neuropathic pain. Inhibitors that can block this pathway in spinal microglia may be useful for the management of neuropathic pain.

Acknowledgment

The work was supported by NIH RO1DE 17794 to R.-R.J.

References

