ELLIS-VAN CREVELD SYNDROME: PRENATAL DIAGNOSIS, MOLECULAR ANALYSIS AND GENETIC COUNSELING

Chih-Ping Chen1,2,3,4,5,6*, Yi-Ning Su7, Chin-Yuan Hsu1, Schu-Rern Chern2, Fuu-Jen Tsai4,8, Pei-Chen Wu1, Po-Tsang Chen2, Wayseen Wang2,9
Departments of 1Obstetrics and Gynecology and 2Medical Research, Mackay Memorial Hospital, 5Institute of Clinical and Community Health Nursing, 6Department of Obstetrics and Gynecology, National Yang-Ming University, 7Department of Medical Genetics, National Taiwan University Hospital, and 9Department of Bioengineering, Tatung University, Taipei; 3Department of Biotechnology, Asia University, 4School of Chinese Medicine, College of Chinese Medicine, China Medical University, and 8Departments of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan.

SUMMARY
Objective: To present the perinatal findings and molecular genetic analysis of two siblings with Ellis-van Creveld (EvC) syndrome.

Materials, Methods and Results: A 33-year-old woman, gravida 3, para 1, was referred for genetic counseling at 18 gestational weeks because of recurrent fetal skeletal dysplasia. Two years previously, she had delivered a 1,316-g dead male baby at 28 gestational weeks with a karyotype of 46,XY, postaxial polydactyly of the hands, thoracic narrowing, endocardial cushion defects, transposition of the great arteries, shortening of the long bones, malposition of the toes, and hypoplastic nails. During this pregnancy, prenatal ultrasound at 18 gestational weeks revealed shortening of the long bones (equivalent to 15 weeks), postaxial polydactyly of both hands, thoracic narrowing, and endocardial cushion defects. The pregnancy was subsequently terminated, and a 236-g female fetus was delivered with a karyotype of 46,XX, postaxial polydactyly of the hands, thoracic dysplasia, endocardial cushion defects, shortening of the long bones, and malposition of the toes and hypoplastic nails. The phenotype of each of the two siblings was consistent with EVC syndrome. Molecular analysis of the EVC and EVC2 genes revealed heterozygous mutations in the EVC2 gene. A heterozygous deletion mutation of a 26-bp deletion of c.871-2_894del26 encompassing the junction between intron 7 and exon 8 of the EVC2 gene was found in the mother and two siblings, and a heterozygous nonsense mutation of c.1195C>T, p.R399X in exon 10 of the EVC2 gene was found in the father and two siblings.

Conclusion: Prenatal sonographic identification of endocardial cushion defects in association with shortening of the long bones should alert clinicians to the possibility of EvC syndrome and prompt a careful search of hexadactyly of the hands. Molecular analysis of the EVC and EVC2 genes is helpful in genetic counseling in cases with prenatally detected postaxial polydactyly, thoracic narrowing, short limbs and endocardial cushion defects. [Taiwan J Obstet Gynecol 2010;49(4):481–486]

Key Words: Ellis-van Creveld syndrome, EVC, EVC2, prenatal diagnosis, ultrasound

Introduction
Ellis-van Creveld (EvC) syndrome (OMIM 225500), or chondroectodermal dysplasia, is an autosomal recessive ciliary disorder associated with a wide spectrum of developing abnormalities involving the ectoderm, skeleton and heart. EvC syndrome is a relatively rare
disorder, but is most prevalent in the Amish population [1,2] and in some Arab populations [3] because of consanguinity. The birth prevalence is estimated to be 0.7 per 100,000 of live births in the non-Amish population [4], 5.2 per 100,000 of live births in the United Arab Emirates [3], and 5 per 1,000 of live births in the Amish of Lancaster County, Pennsylvania, USA [5]. EvC syndrome is characterized by short ribs, short limbs, postaxial polydactyly of the hands, polydactyly of the feet (in 10% of cases), ectodermal dysplasia such as dysplastic nails and teeth, sparse hair and an absent gingival sulcus, and congenital heart defects (in 60% of cases) such as a common atrium, atrioventricular septal defects (AVSDs) and patent ductus arteriosus [6,7]. EvC syndrome is caused by mutations in the \textit{EVC} gene (OMIM 604831) [8] or \textit{EVC2} gene (OMIM 607261) [9] that encodes cilia-related proteins Evc or Evc2, respectively. Mutations in the \textit{EVC} gene or \textit{EVC2} gene may also cause Weyers acrodental dysostosis (OMIM 193530), an autosomal dominant disorder characterized by postaxial polydactyly and abnormalities of the lower jaw, dentition and oral vestibule. The Evc and Evc2 proteins are localized in the basal bodies of primary cilia. Evc is a basal body component of hedgehog signaling indispensable for normal endochondral growth and normal transcriptional activation of Indian hedgehog-regulated genes [10]. Both EvC syndrome and Weyers acrodental dysostosis are caused by hedgehog signaling defects in the primary cilia due to mutations in the cilia-related proteins resulting in an aberrant response to the hedgehog ligands [7]. We previously reported perinatal findings of hexadactyly-associated ciliary disorders of Meckel syndrome [11], Joubert syndrome [12], and short rib-polydactyly syndrome (SRPS) [13–16]. We present the perinatal findings and molecular genetic analysis of two siblings affected by hexadactyly and EvC syndrome.

Materials, Methods and Results

A 33-year-old woman, gravida 3, para 1, was referred for genetic counseling at 18 gestational weeks because of recurrent fetal skeletal dysplasia. She and her husband were non-consanguineous. She had experienced one spontaneous abortion and delivered a baby with skeletal dysplasia. Two years previously, she had delivered a 1,316-g dead male baby (proband 1) at 28 gestational weeks with a karyotype of 46,XY, postaxial polydactyly of the hands, thoracic narrowness, endocardial cushion defects, transposition of the great arteries (TGA), shortening of the long bones, malposition of the toes and hypoplastic nails (Figures 1–3). During this pregnancy, prenatal ultrasound at 18 gestational weeks revealed shortening of the long bones (equivalent to 15 weeks), postaxial polydactyly of both hands, thoracic narrowness, and endocardial cushion defects (Figures 4–6). The pregnancy was subsequently terminated, and a 236-g female fetus (proband 2) was delivered with a karyotype of 46,XX, postaxial polydactyly of the hands, thoracic dysplasia, endocardial
cushion defects, shortening of the long bones, malposition of the toes and hypoplastic nails (Figures 7–10). The phenotype of each of the two siblings is consistent with EvC syndrome. Molecular analysis of the *EVC* and *EVC2* genes showed heterozygous mutations in the *EVC2* gene. A heterozygous deletion mutation of a 26-bp deletion of c.871-2_894del26 encompassing the junction between intron 7 and exon 8 of the *EVC2* gene was found in the mother and two siblings, and a heterozygous nonsense mutation of c.1195C>T, p.R399X

Figure 4. Prenatal ultrasound shows thoracic narrowness in proband 2.

Figure 5. Prenatal ultrasound shows hexadactyly of the hands in proband 2.

Figure 6. Prenatal ultrasound shows endocardial cushion defects in proband 2.

Figure 7. Whole body X-ray of proband 2 at 18 gestational weeks.

Figure 8. Proband 2 at birth.

Figure 9. Postaxial polydactyly of the hands in proband 2.
in exon 10 of the EVC2 gene was found in the father and two siblings (Figure 11).

Discussion

The present case prenatally manifested shortening of the long bones, thoracic dysplasia, hexadactyly of the hands, and AVSD on the second-trimester ultrasound. Prenatal diagnosis of EvC syndrome by direct visualization of the fetus using fetoscopy has previously been reported [17,18]. First-trimester transabdominal embryo-fetoscopy for the detection of limb or facial abnormalities has recently been applied to detect skeletal dysplasia such as SRPS [19]. Recurrent EvC syndrome can be diagnosed in the first trimester by the ultrasound findings of AVSD, polydactyly and short limbs [20] as well as increased fetal nuchal translucency thickness [21]. In the second trimester, the diagnosis of EvC syndrome can be made based on a positive family history and the ultrasound findings of shortness of the long bones, hexadactyly of the hands, a narrow thorax and congenital heart defects, especially abnormalities of atrial septation and AVSD [22–28].

Our first proband manifested AVSD and TGA, and our second proband manifested AVSD on prenatal ultrasound. Congenital heart defects occur in approximately 60% of patients with EvC syndrome with most patients being variants of AVSD [1]. Atroventricular septation of the mammalian heart into four chambers requires sonic hedgehog signaling-dependent cellular contributions from the extracardiac tissues of the dorsal mesocardium as well as contributions from the muscular and mesenchymal atrial septum and the endocardial cushions [29]. Sund et al [30] found that the expression of EVC and EVC2 mRNA and proteins was high in the outflow tract and dorsal mesenchymal protrusion and was also present in the mesenchymal structures of the atrial septum and the endocardial cushions. This finding suggested that Evc and Evc2 proteins function coordinately in cardiac development and that loss of this coordinate function results in characteristic EvC syndrome.

In the present case, we identified heterozygous EVC2 mutations in the affected fetuses. The nonsense mutation of C1195T, R399X, has been described previously [31]. However, the deletion mutation of c.871-2_894del26 is novel. Sequencing the EVC and EVC2 genes has been reported to identify mutations in only two-thirds of EvC patients, indicating the possibility of genetic heterogeneity in EvC syndrome [32]. In a study of 65 individuals with EvC syndrome, Tompson et al
identified EVC mutations in 20 cases (31%), all of whom had mutations on each allele, found EVC2 mutations in 25 cases (38%), 22 of whom had mutations on each allele, and three had only one mutation, and there was no mutation in either gene in 20 cases (31%). The three patients in their study with an EVC2 mutation on only one allele had a framewise or a nonsense codon and a more severe phenotype than Weyers acrodedonty.

There is a risk of 25% recurrence in subsequent pregnancies in fetal EvC syndrome. Genetic counseling of fetal EvC syndrome should include differential diagnoses of SRPS, Jeune asphyxiating thoracic dystrophy (JATD), and McKusick-Kaufman syndrome (MKKS). SRPSs are a heterogeneous group of lethal autosomal recessive skeletal dysplasias. Four types of SRPS have been recognized [33]. Type I SRPS (Saldino-Noonan) (OMIM 263530) is characterized by flipper-like extremities, polydactyly, polycystic kidneys and pointed metaphyses. Type II SRPS (Majewski) (OMIM 263520) is characterized by polydactyly, micromelia, cleft lip/palate, polycystic kidneys, a disproportionately short ovoid tibia and occasionally hypoplastic epiglottis and larynx. Type III SRPS (Verma-Naumoff) (OMIM 263510) is characterized by polydactyly, micromelia, metaphyseal spurs and occasionally situs inversus totalis. Type IV SRPS (Beemer-Langer) (OMIM 269860) clinically resembles type II SRPS other than polydactyly. Overlapping clinical and radiological manifestations have led to the hypothesis that the different subtypes may be a single genetic disorder with variable expressivity [34–37]. Type III SRPS is caused by mutations of the DYNC2H1 gene (OMIM 603297) [38,39]. JATD (OMIM 208500) is an autosomal recessive disorder characterized by thoracic dystrophy, chondrodysplasia, short ribs, short long bones, inconstant polydactyly and a trident acetalubar roof with occasional involvement of the liver, retinal degeneration, and cystic renal disease. JATD is caused by mutations of the IFT80 gene (OMIM 611177) and DYNC2H1 gene [38–40]. JATD and type III SRPS have been suggested to be variants of a single ciliary disorder [38]. MKKS (OMIM 236700) is an autosomal recessive disorder characterized by polydactyly, congenital heart defects, hydrometrocolpos, and it clinically overlaps with Bardet-Biedl syndrome (OMIM 209900) comprising obesity, retinitis pigmentosa, polydactyly, mental retardation, renal malformation and genital hypoplasia. MKKS and Bardet-Biedl syndrome can be caused by mutations of the MKKS gene (OMIM 604896) [41,42].

In summary, we have presented prenatal diagnosis, molecular analysis and genetic counseling of recurrent EvC syndrome. Prenatal sonographic identification of endocardial cushion defects in association with shortening of the long bones should alert clinicians to the possibility of EvC syndrome and prompt a careful search of hexadactyly of the hands. Molecular analysis of the EVC and EVC2 genes is helpful in genetic counseling in cases with prenatally detected postaxial polydactyly, thoracic narrowness, short limbs, and endocardial cushion defects.

Acknowledgments

This work was supported by research grants NSC-96-2314-B-195-008-MY3 and NSC-97-2314-B-195-006-MY3 from the National Science Council, and MMH-E-99004 from Mackay Memorial Hospital, Taipei, Taiwan.

References

