GENETIC POLYMORPHISMS OF OXIDATIVE AND ANTIOXIDANT ENZYMES AND ARSENIC-RELATED HYPERTENSION

Yu-Mei Hsueh¹, Pinpin Lin², Hui-Wen Chen¹, Horng-Sheng Shiu³, Chi-Jung Chung⁴, Chiao-Tzu Tsai¹, Yung-Kay Huang⁵, Hung-Yi Chiu⁶, Chien-Jen Chen⁷

¹Department of Public Health, School of Medicine, Taipei Medical University, Taipei, ²Institute of Toxicology, Chung-Shan Medical University, Taichung, ³Graduate Institute of Medical Sciences, Taipei Medical University and, Department of Chinese Medicine, Chang Gung Memorial Hospital, Taipei, ⁴Graduate Institute of Public Health, Taipei Medical University, Taipei, ⁵Graduate Institute of Medicine Science, Taipei Medical University, Taipei, ⁶School of Public Health, Taipei Medical University, Taipei, and ⁷Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan

The association of 4 genetic polymorphisms, NAD(P)H oxidase, manganese superoxide dismutase (MnSOD), catalase, and endothelial nitric oxide synthase (e-NOS), was assessed with arsenic-related hypertension risk among 79 hypertensive cases and 213 controls in an arseniasis-hyperendemic area of Taiwan. Overall, MnSOD polymorphism significantly increased the risk of hypertension regardless of arsenic exposure. NADPH oxidase and eNOS polymorphisms were significantly associated with hypertension risk in the high arsenic exposure group; however, catalase polymorphism was not associated with hypertension. Groups were further stratified by triglyceride levels to evaluate whether the cumulative arsenic exposure combined the three polymorphisms together. The adjusted odds ratios (ORs) of at least two risk factors of the cumulative arsenic exposure and MnSOD, NADPH oxidase, and eNOS three-polymorphism combination versus any one risk factor of them were 0.8 (95% CI 0.3–2.3) for individuals with low triglyceride levels (<110 mg/dl) and 2.5 (95% CI 1.0–6.0) for high-triglyceride groups (>110 mg/dl), respectively. These results suggested that the NADPH oxidase, MnSOD, and e-NOS polymorphisms, but not catalase, might play a role in the development of arsenic-related hypertension, especially in subjects with high triglyceride levels.

This study was supported by grants NSC-86-2314-B-038-038, NSC-87-2314-B-038-029, NSC-88-2314-B-038-112, NSC-88-2318-B-038-002-M51, NSC-89-2320-B-038-013, NSC-89-2318-B-038-M51, NSC-89-2314-B-038-049, NSC-90-2320-B-038-021, NSC-90-2320-B-002-197, NSC-90-2320-B-038-021, NSC-91-3112-B-038-001, NSC-92-2320-B-002-156, NSC-92-3112-B-038-001, and NSC-92-2321-B-038-004 from the National Science Council of the ROC.

Address correspondence to Yu-Mei Hsueh, PhD, Department of Public Health, School of Medicine, Taipei Medical University, Taipei, No. 250 Wu-Hsin Street, Taipei, 110, Taiwan. E-mail: ymhsueh@tmu.edu.tw
Approximately 40 million people in different parts of the world are exposed to arsenic through drinking water (Nordstrom, 2002). The chemical form of most of the arsenic in artesian well water is inorganic arsenic (Lin et al., 1998). Epidemiological studies have documented that long-term inorganic arsenic exposure is associated with an increased risk of cancers and atherosclerotic lesions at several anatomic sites (Tsai et al., 1998; Wu et al., 1989). Ingested arsenic has long been associated with the development of blackfoot disease (BFD), a unique peripheral vascular disease that was endemic in the southwestern coastal area of Taiwan where residents used high-arsenic artesian well water for more than 50 yr (Tseng, 1989). In addition, cardiovascular disease, such as ischemic heart disease (Chen et al., 1996), coronary heart disease (Wu et al., 1989), cerebrovascular accidents (Chiou et al., 1997), diabetes mellitus (Lai et al., 1994), and hypertension (Chen et al., 1995; Rahman et al., 1999), is closely related to long-term ingestion of high-arsenic drinking water, but the effect on the development of hypertension from long-term exposure to inorganic arsenic has rarely been studied; it is worthwhile to examine the mechanism underlying the ability of inorganic arsenic to induce hypertension.

Oxidative stress, a state of excessive reactive oxidative species (ROS) generation, is associated with vascular disease states such as hypertension (Berry et al., 2001). Previous studies demonstrated that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was responsible for superoxide production within the vascular wall (Mohazzab & Wolin, 1994). Recently, an animal study also showed that expression of the vascular NADPH oxidase was increased in hypertensive rats (Morawietz et al., 2001). A study demonstrated that arsenite activates NADPH oxidase P22phox subunit to produce superoxide, which then produces oxidative DNA damage in vascular smooth muscle cells (Lynn et al., 2000). In contrast, arsenite suppresses the relaxation in blood vessels by inhibiting eNOS activity in endothelial cells (Lee et al., 2003). The eNOS gene Glu298Asp variant is found in association with coronary artery disease (Hingorani et al., 1999) and hypertension (Miyamoto et al., 1998). Whether or not NADPH oxidase or eNOS gene polymorphism is associated with arsenic-related hypertension remains unclear.

Endogenous defenses against ROS include glutathione peroxidase, catalase, and superoxide dismutase (SOD) (Oberley & Oberley, 1997). A study found that high concentrations of arsenite have an inhibitory effect on the accumulation of catalase and SOD mRNA in maize (Mylonas et al., 1998). An in vitro study showed that catalase and SOD modulated arsenic-induced DNA damage (Wang et al., 2001). In addition, a study reported that MnSOD polymorphism was associated with increased breast cancer risk (Ambrosone et al., 1999). A study demonstrated that subjects carrying the common variant (TT allele) of the catalase gene had significantly higher catalase activity levels than those carrying the CC allele (Forsberg et al., 2001), but until now, this variant has only been reported to be associated with acatalasemia (Goth et al., 2000). Based on these findings, MnSOD and catalase genotypes may affect arsenic-induced ROS and alter the risk of hypertension. Therefore, this study attempted to evaluate the
relationships among NADPH oxidase, MnSOD, catalase, and e-NOS genetic polymorphisms and correlate them to the risk of arsenic-related hypertension.

MATERIALS AND METHODS

Study Area

The study area included Homei, Fuhsing, and Hsinming Villages in Putai Township, Chayi County, located in southwestern Taiwan. Residents in this study area exhibited the highest prevalence of BFD in Taiwan (Wu et al., 1961). Due to the high salinity of shallow well water, residents used water from artesian wells for more than 50 yr before the mid-1970s. The median arsenic concentration of the artesian well water ranged from 0.7 to 0.93 mg/L (Kuo, 1964). A tap water supply system was implemented in the study area in the early 1960s, but its usage remained low until the early 1970s. After the mid-1970s, artesian well water was no longer used for drinking and cooking.

Study Subjects

The recruitment of study subjects was previously described in detail (Chen et al., 1995). In brief, all adult residents who lived >6 mo in the study area were selected from records of the local household registration bureau, where demographic status and events including birth, marriage, education, migration, employment, and death of all family members in every household are mandatory to register and update annually. Household visits were carried out to interview residents who lived in the study area ≥5 d/wk and invited them to participate in a health examination. In first health examination during January and February 1989, 898 subjects participated. Biannual health examinations were then carried out. During these examinations, 79 hypertensive patients and 213 healthy subjects, who had buffy coat samples, were evaluated for polymorphism of 4 enzyme genes.

Blood Pressure Measurements and Hypertension Status

The standard protocol for measuring blood pressure recommended by the World Health Organization (WHO) (Rose et al., 1982) was used in this study. The WHO used the diagnostic standard of hypertension of on average SBP/DBP of 140/90 mm Hg or greater in 1999. Hypertension status was diagnosed at first health examination. Some subjects who had a history of hypertension and were regularly being treated with antihypertensive drugs were also defined as having hypertension.

Questionnaire Interview and Arsenic Exposure

Well-trained public health nurses carried out a standardized personal interview of study subjects based on a structured questionnaire. Information obtained from the interview included residential and water consumption history, socioeconomic and demographic characteristics, and lifestyle variables
including alcohol consumption, cigarette smoking, and dietary consumption
frequency, as well as personal and family histories of hypertension, diabetes,
and cardiovascular diseases.

The arsenic concentration of the artesian well water for each village in the
BFD endemic area was obtained from a previous study carried out in the
1960s (Wu et al., 1961). A detailed residential history, including villages of res-
idence and duration of residence, and a history of water consumption, includ-
ing water source and duration of consumption, were obtained on the basis of
the questionnaire interview. An index of cumulative arsenic exposure (CAE)
was derived to reflect the overall exposure to arsenic for each study subject.
The CAE (in mg/L-yr) was defined as the sum of the products derived by multi-
plying the arsenic concentration in well water (mg/L) by the duration of con-
suming the artesian well water (yr) during consecutive periods of living in
different villages as previously described (Chen et al., 1995). The CAE of a
given subject was considered unknown if the arsenic concentration of artesian
well water in any one or more villages where the subject lived was unknown.

Biospecimen Collection and Laboratory Examinations

Fasting blood samples were collected from study subjects at first health
examination for testing serum levels of total cholesterol, high-density lipopro-
tein (HDL) cholesterol, and triglycerides by standardized autoanalyzers. More-
over, DNA was extracted using proteinase K digestion following phenol and
chloroform extraction from the buffy coat to analyze the genotype of NADPH
oxidase, MnSOD, catalase, and eNOS.

MnSOD Genetic Polymorphism Determination

Genotyping of MnSOD polymorphism (a T-to-C substitution in the mito-
chondria targeting sequence) was performed by polymerase chain reaction
(PCR) amplification following digestion with Turbo NaeI (Promega), as previ-
ously described (Lin et al., 2003).

NADPH Oxidase Genetic Polymorphism Determination

Genotyping of NADPH oxidase polymorphism (a C-to-T substitution of the
C242T polymorphic site) was performed by polymerase chain reaction (PCR)
amplification following digestion with Rsa I, as previously described (Inoue et
al., 1998). A 348-bp fragment was characterized as the wild-type allele, while
160- and 188-bp fragments were considered mutant alleles.

Catalase Genetic Polymorphism Determination

Genotyping of catalase polymorphism (a C-to-T substitution of the C262T
polymeric site located on chromosome 11 p 13) was performed by PCR
amplification following digestion with Sma I, and analyzed by 4% agarose gel
electrophoresis as previously described (Forsberg et al., 2001). Two fragments
of 155 and 30 bp were characterized as the wild-type allele and a 185-bp
fragment as the mutant allele.
e-NOS Genetic Polymorphism Determination

Genotyping of e-NOS polymorphism (a G-to-T substitution of the G894T polymorphic site is located on chromosome 7q35-36, exon7) was performed by PCR amplification following digestion with Ban II, as previously described (Miya-moto et al., 1998). Two fragments of 92 and 62 bp were characterized as the wild-type allele, and a 154-bp fragment was characterized as the mutant allele.

All genotypes were validated by DNA sequence, and 10% of DNA samples were genotyped a second time and the concordance was 100%. The disease status of study subjects was blind when technicians examined four genotypes.

Data Analysis

Mean and standard error (SE) of age and body mass index (BMI) were calculated and analyzed by Student’s t-test to determine the difference between hypertensive cases and healthy controls. In the multivariate analysis of associations between hypertension and various risk factors, age- and gender-adjusted odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated using multiple logistic regression models. Arsenic exposure indices, BMI, and lipid profiles were categorized according to the tertile levels in healthy controls. Analysis of the combination of variables used the median to categorize CAE, and stratification analysis also used the median to stratify triglyceride.

RESULTS

In total, 292 adult residents including 115 men and 177 women participated in this study. According to the former diagnostic criteria of SBP/DBP (160/95 mm Hg), the prevalences in the age groups of 30 to 39, 40 to 49, 50 to 59, and more than 60 yr were 6.25%, 13.64%, 25%, and 26.32% in male subjects, and 0%, 14.89%, 26.15%, and 31.82% in female subjects, respectively, which are the same as our former data (Chen et al., 1995).

Patient Characteristics

Table 1 shows that the prevalence of hypertension significantly increased with age. No significant associations with the prevalence of hypertension were observed for gender, educational level, cigarette smoking, or alcohol consumption. BMI was significantly associated with an increased hypertension risk in a dose-related manner. A BMI of 27 kg/m² or greater is defined as obesity in Taiwan, and the OR was 2.2 compared to a BMI of less 24 kg/m². This suggests that the propensity to accumulate abdominal adipose tissue is greater in subjects genetically predisposed to the development of hypertension (Allemann et al., 2001).

Long-Term Arsenic Exposure, Lipid Profiles, and Hypertension

There were significant dose-response relationships between hypertension prevalence and chronic arsenic exposure indicated by duration of living in a BFD area, duration of artesian well water consumption, and CAE (Table 2).
A dose-response relationship between triglyceride and hypertension was noted. The OR of hypertension for LDL cholesterol of 96–130 mg/dl was significantly higher than that for low-density lipoprotein (LDL) cholesterol of less than 96 mg/dl (Table 2). In spite of statistically significant differences between hypertensive patients and healthy controls, the mean values of these lipid measurements were almost within normal range.

Relationship Between NADPH Oxidase, MnSOD, Catalase, and e-NOS Genotypes and Hypertension

The distributions of NADPH oxidase, MnSOD, catalase, and e-NOS genotypes are summarized in Table 3. The MnSOD and e-NOS genotypic distributions for hypertensive cases and the control groups fit the Hardy-Weinberg equilibrium. The allelic frequency of the four genotypes in hypertensive cases...
did not significantly differ from that in the controls. The four genotypes were divided into two groups, wild types and genotypes carrying variant alleles, for statistical analysis. There were no associations between the NADPH oxidase, catalase, and e-NOS genotypes and hypertension. After being adjusted for risk factors, individuals carrying the C allele of MnSOD polymorphism were at a significantly higher risk of hypertension (OR, 2.0; 95% CI, 1.0–3.9).

TABLE 2. Prevalence of Hypertension by Arsenic Exposure Indices and Lipid Profiles

<table>
<thead>
<tr>
<th>Variable</th>
<th>Healthy controls; number</th>
<th>Hypertensive cases; number</th>
<th>Age/gender-adjusted OR (95% CI)</th>
<th>Multivariate OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of living in a blackfoot disease area (yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 31</td>
<td>73</td>
<td>8</td>
<td>1.0<sup>e,f</sup></td>
<td>1.0<sup>a,b,e,f</sup></td>
</tr>
<tr>
<td>31-43</td>
<td>67</td>
<td>18</td>
<td>1.9 (0.7-4.8)</td>
<td>1.8 (0.7-4.8)</td>
</tr>
<tr>
<td>≥43</td>
<td>73</td>
<td>53</td>
<td>3.5 (1.5-8.3)<sup>f</sup></td>
<td>3.4 (1.4-8.2)<sup>f</sup></td>
</tr>
<tr>
<td>Duration of artesian well water consumption (yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 3</td>
<td>76</td>
<td>9</td>
<td>1.0<sup>e,f</sup></td>
<td>1.0<sup>a,b,e,f</sup></td>
</tr>
<tr>
<td>3-15</td>
<td>62</td>
<td>15</td>
<td>1.6 (0.6-4.1)</td>
<td>1.7 (0.6-4.3)</td>
</tr>
<tr>
<td>≥15</td>
<td>75</td>
<td>55</td>
<td>3.2 (1.4-7.4)<sup>f</sup></td>
<td>3.3 (1.4-7.8)<sup>f</sup></td>
</tr>
<tr>
<td>CAE (mg/L-yr)<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 4.1</td>
<td>52</td>
<td>2</td>
<td>1.0<sup>e,f</sup></td>
<td>1.0<sup>a,b,e,f</sup></td>
</tr>
<tr>
<td>4.1-14.7</td>
<td>57</td>
<td>19</td>
<td>7.5 (1.6-34.4)<sup>f</sup></td>
<td>6.0 (1.3-27.9)<sup>f</sup></td>
</tr>
<tr>
<td>≥14.7</td>
<td>55</td>
<td>42</td>
<td>10.0 (2.2-45.6)<sup>f</sup></td>
<td>11.6 (2.5-54.9)<sup>f</sup></td>
</tr>
<tr>
<td>Cholesterol<sup>d</sup> (mg/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 220</td>
<td>71</td>
<td>28</td>
<td>1.0</td>
<td>1.0<sup>b</sup></td>
</tr>
<tr>
<td>220-282</td>
<td>66</td>
<td>17</td>
<td>0.6 (0.3-1.3)</td>
<td>0.7 (0.3-1.8)</td>
</tr>
<tr>
<td>≥282</td>
<td>74</td>
<td>34</td>
<td>0.8 (0.4-1.5)</td>
<td>1.2 (0.6-2.6)</td>
</tr>
<tr>
<td>Triglyceride<sup>e</sup> (mg/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 88</td>
<td>73</td>
<td>16</td>
<td>1.0<sup>e,f</sup></td>
<td>1.0<sup>a,b,e,f</sup></td>
</tr>
<tr>
<td>88-138</td>
<td>65</td>
<td>25</td>
<td>1.6 (0.7-3.5)</td>
<td>1.5 (0.6-3.7)</td>
</tr>
<tr>
<td>≥138</td>
<td>73</td>
<td>38</td>
<td>1.9 (0.9-3.8)</td>
<td>2.1 (0.9-5.0)</td>
</tr>
<tr>
<td>HDL-cholesterol (mg/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 53</td>
<td>71</td>
<td>30</td>
<td>1.0</td>
<td>1.0<sup>b</sup></td>
</tr>
<tr>
<td>53-66</td>
<td>70</td>
<td>25</td>
<td>0.8 (0.4-1.5)</td>
<td>0.9 (0.4-2.1)</td>
</tr>
<tr>
<td>≥66</td>
<td>72</td>
<td>24</td>
<td>0.7 (0.4-1.5)</td>
<td>1.3 (0.5-2.9)</td>
</tr>
<tr>
<td>LDL-cholesterol (mg/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 96</td>
<td>75</td>
<td>13</td>
<td>1.0</td>
<td>1.0<sup>b</sup></td>
</tr>
<tr>
<td>96-130</td>
<td>67</td>
<td>36</td>
<td>3.9 (1.8-8.5)<sup>f</sup></td>
<td>3.3 (1.3-8.4)<sup>f</sup></td>
</tr>
<tr>
<td>≥130</td>
<td>71</td>
<td>30</td>
<td>2.1 (1.0-4.7)</td>
<td>1.9 (0.8-4.7)</td>
</tr>
</tbody>
</table>

^aMultivariate OR adjusted for age, gender, BMI, and triglyceride.
^bMultivariate OR adjusted for age, gender, BMI, and cumulative arsenic exposure.
^cData on 65 subjects with no information on cumulative arsenic exposure were not included in the table.
^dData on two subjects with no information on cholesterol and triglyceride were not included in the table.
^eTest for the statistical significance of a trend.
^fSignificant at p < .05.
Long-Term Arsenic Exposure, Genotypes, and Hypertension

To understand the interactions between CAE and genotypes for hypertension risk, CAE and the four genotypes were analyzed together (Table 4). Regardless of eNOS genotypes, subjects with CAE ≥ 10.5 mg/L-yr had a significantly higher risk than those with CAE < 10.5 mg/L-yr. Subjects with a lower CAE and the TT genotype of MnSOD had the lowest risk among the four groups. Subjects carrying the CC genotype of catalase with a CAE of ≥ 10.5 mg/L-yr had a significantly higher risk than those with a CAE of < 10.5 mg/L-yr. Subjects with a CAE of < 10.5 mg/L-yr and the NADPH oxidase CC genotype served as the reference group, and subjects with the CT/TT genotype and either a high or low CAE had higher risks than the reference group.

Combined Effects of the Cumulative Arsenic Exposure and Three Genes on Hypertension Risk

The population was dichotomized into three groups based on the cumulative arsenic exposure and the number of variant genotypes of NADPH oxidase, MnSOD, catalase, and e-NOS polymorphisms among hypertensive cases and healthy controls.

TABLE 3. Allelic Frequencies and Risk Associated With NADPH oxidase, MnSOD, catalase, and e-NOS Polymorphisms Among Hypertensive Cases and Healthy Controls

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Hypertensive cases, number (%)</th>
<th>Healthy controls, number (%)</th>
<th>ORa (95% CI)</th>
<th>ORb (95% CI)</th>
<th>ORc (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADPH oxidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>68 (86.1)</td>
<td>193 (90.6)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>CT</td>
<td>9 (11.4)</td>
<td>17 (8.0)</td>
<td>1.1 (0.4–2.8)</td>
<td>1.1 (0.4–3.3)</td>
<td>1.0 (0.3–3.0)</td>
</tr>
<tr>
<td>TT</td>
<td>2 (2.5)</td>
<td>3 (1.4)</td>
<td>3.2 (0.5–22.3)</td>
<td>2.8 (0.3–25.2)</td>
<td>2.4 (0.3–21.1)</td>
</tr>
<tr>
<td>CT/TT vs. CC</td>
<td>11</td>
<td>20</td>
<td>1.3 (0.6–3.1)</td>
<td>1.3 (0.5–3.5)</td>
<td>1.2 (0.4–3.2)</td>
</tr>
<tr>
<td>MnSODd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>45 (57.0)</td>
<td>141 (66.8)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>TC</td>
<td>32 (40.5)</td>
<td>67 (31.8)</td>
<td>1.8 (1.0–3.2)</td>
<td>2.0 (1.0–3.0)f</td>
<td>2.1 (1.1–4.2)f</td>
</tr>
<tr>
<td>CC</td>
<td>2 (1.4)</td>
<td>3 (1.4)</td>
<td>1.7 (0.2–11.9)</td>
<td>0.9 (0.1–10.1)</td>
<td>0.6 (0.1–7.2)</td>
</tr>
<tr>
<td>TC/CC vs. TT</td>
<td>34</td>
<td>70</td>
<td>1.8 (1.0–3.2)</td>
<td>1.9 (1.0–3.7)</td>
<td>2.0 (1.0–3.9)f</td>
</tr>
<tr>
<td>Catalase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>74 (93.7)</td>
<td>196 (92.0)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>CT</td>
<td>5 (6.3)</td>
<td>17 (8.0)</td>
<td>1.1 (0.4–3.2)</td>
<td>0.7 (0.2–2.2)</td>
<td>0.7 (0.2–2.4)</td>
</tr>
<tr>
<td>e-NOSe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>66 (83.5)</td>
<td>170 (82.1)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>GT/TT</td>
<td>13 or 0 (16.5)</td>
<td>37 or 3 (17.9)</td>
<td>0.9 (0.4–1.9)</td>
<td>1.2 (0.5–2.8)</td>
<td>1.2 (0.5–2.7)</td>
</tr>
</tbody>
</table>

aAdjusted for age and gender.
bAdjusted for age, gender, BMI, and cumulative arsenic exposure.
cAdjusted for age, gender, BMI, triglyceride, LDL, and cumulative arsenic exposure.
dData on two healthy controls with no information on MnSOD polymorphism were not included in the table.
eData on three healthy controls with no information on e-NOS polymorphism were not included in the table.
fSignificant at $p < .05$.

Long-Term Arsenic Exposure, Genotypes, and Hypertension

To understand the interactions between CAE and genotypes for hypertension risk, CAE and the four genotypes were analyzed together (Table 4). Regardless of eNOS genotypes, subjects with CAE ≥ 10.5 mg/L-yr had a significantly higher risk than those with CAE < 10.5 mg/L-yr. Subjects with a lower CAE and the TT genotype of MnSOD had the lowest risk among the four groups. Subjects carrying the CC genotype of catalase with a CAE of ≥ 10.5 mg/L-yr had a significantly higher risk than those with a CAE of < 10.5 mg/L-yr. Subjects with a CAE of < 10.5 mg/L-yr and the NADPH oxidase CC genotype served as the reference group, and subjects with the CT/TT genotype and either a high or low CAE had higher risks than the reference group.
MnSOD, and e-NOS polymorphisms: Group 1, the reference group, consisted of individuals with CAE = 0 and no variant genotype among the three genes or CAE = 0 and at least one variant allele of three polymorphisms; group 2, individuals with CAE > 0 and no variant allele of three polymorphisms; group 3, individuals with CAE > 0 and at least one variant allele of three polymorphisms or CAE = 0 and at least two variant allele of three polymorphisms. In the logistic regression analyses, groups 1 and 2 were combined into one group because of the small sample sizes when stratified by triglyceride. The multivariate adjusted ORs of the extreme risk group 3 versus group 1 showed a significant risk of hypertension; OR was 9 (95% CI 1.1–75.1), stratified by triglyceride, in the triglyceride >110 mg/dl group, group 3 still found a higher risk than group 1–2, and the OR was 2.5 (95% CI 1.0–6.0) (Table 5).
DISCUSSION

A dose-response relationship between long-term arsenic exposure and the prevalence of hypertension was quite evident in this study as well as in our previous study (Chen et al., 1995). Recently, a study reported that arsenite altered vascular tone by decreasing vasorelaxation (Lee et al., 2003), which may be a contributing factor in the development of hypertension in populations exposed to arsenic. Frequencies of NADPH oxidase 242T in this study were 5%; these data and those from studies from Japan (Inoue et al., 1998) were lower than those for Caucasians—for example, 34% for Americans (Li et al., 1999) and 28% for Australians (Cai et al., 1999). The frequency of MnSOD 47C of this study was 17%, the same as for Japanese, but lower than those for Caucasian-Americans at 49% (Ambrosone et al., 1999), French at 34% (Mitrunen et al., 2001), and Finlanders at 48% (Hirvonen et al., 2002). The frequency of catalase 262T in this study was lower than that of Finlanders (4% vs. 43%) (Forsberg et al., 2001), and the cause might not be related with the risk of arsenic-related hypertension. The frequency of eNOS (894T) of this study (10%) was the same as that of African-Americans but lower than that of whites (32.4%) (Chen et al., 2001). Channon and Guzik (2002) reported that people with the CC genotype showed increased NADPH oxidase activity in blood vessels. Schachinger et al. (2001) also noted that the endothelium-dependent

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number of hypertensive cases / healthy controls</th>
<th>Model I OR (95% CI)</th>
<th>Model II OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>30/31</td>
<td>1.0*</td>
<td>1.0*</td>
</tr>
<tr>
<td>Group 2</td>
<td>66/94</td>
<td>7.0 (0.9–57.5)</td>
<td>7.9 (0.9–66.9)</td>
</tr>
<tr>
<td>Group 3</td>
<td>63/97</td>
<td>9.3 (1.1–75.3)</td>
<td>9.0 (1.1–75.1)</td>
</tr>
<tr>
<td>Triglyceride < 110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1–2</td>
<td>47/60</td>
<td>1.0</td>
<td>1.0*</td>
</tr>
<tr>
<td>Group 3</td>
<td>34/44</td>
<td>0.8 (0.3–2.1)</td>
<td>0.8 (0.3–2.3)</td>
</tr>
<tr>
<td>Triglyceride ≥ 110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1–2</td>
<td>49/65</td>
<td>1.0</td>
<td>1.0*</td>
</tr>
<tr>
<td>Group 3</td>
<td>29/53</td>
<td>2.9 (1.2–6.8)</td>
<td>2.5 (1.0–6.0)</td>
</tr>
</tbody>
</table>

Note. Combined variable group 1 consisted of individuals with CAE (mg/L-yr) = 0 and no variant alleles of MnSOD, NADPH oxidase, and e-NOS polymorphisms or CAE (mg/L-yr) = 0 and at least one variant allele of the three polymorphisms; group 2 consisted of individuals with CAE (mg/L-yr) > 0 and no variant alleles of the three polymorphisms; group 3 consisted of the individuals with CAE (mg/L-yr) > 0 and at least one variant allele of the three polymorphisms or CAE (mg/L-yr) = 0 and at least two variant alleles of the three polymorphisms. Model I adjusted for age and gender. Model II adjusted for age, gender, triglyceride, and BMI.

*Test for the statistical significance of a trend.

Multivariate OR adjusted for age, gender, and BMI.

Significant at p < .05.
dilator response was significantly blunted in carriers of the CC genotype of NADPH oxidase, and the prevalence of the CT/TT genotype was significantly more frequent in control subjects than in patients with coronary artery disease (Inoue et al. 1998). In contrast, in our present study, data showed that individuals with the CT/TT genotype of NADPH oxidase had a 1.3-fold higher hypertension risk compared to those with the wild CC genotype. The risk further increased to 4.6-fold among the high arsenic exposure group. This finding was consistent with results that Korean males carrying the 242T allele in the NADPH oxidase p22phox subunit had significantly increased risk of coronary artery disease (Lee et al., 2001), and a Japanese study reported that individuals with the CT/TT genotype had significantly higher risk of cerebrovascular disease than those with the CC genotype (Ito et al., 2000). In addition, arsenic treatment was shown to stimulate superoxide accumulation in vascular endothelial cells, which was attenuated by the inhibitors of NADPH oxidase (Smith et al., 2001). This suggests that arsenic may activate NADPH oxidase to produce ROS in endothelial cells (Smith et al., 2001), resulting in hypertension. Determining whether the TT or CT genotype of NADPH oxidase polymorphism increases ROS during arsenic exposure, thus resulting in hypertension, requires further investigation.

The eNOS is responsible for the conversion of l-arginine to NO in the endothelium (Moncada et al., 1991), and is involved in the regulation of blood pressure (Tseng et al., 1996). It was found that the hypertension risk for subjects carrying the T allele of eNOS was 1.2-fold higher than for those carrying the GG genotype. Furthermore, a high CAE had a significantly higher risk than those with low CAE for carrying the GG genotype (OR = 2.7, 95% CI 1.1–6.7). Subjects carrying the T allele of eNOS with a high CAE had 3.7 times greater risk than those carrying the GG genotype with a low CAE. These findings suggest that subjects carrying the GT/TT genotype might have higher blood pressure (Chen et al., 2001) and lower eNOS activity (Wang et al., 2000) than those with the GG genotype. Furthermore, systemic NO generation might be reduced in subjects carrying the eNOS GT/TT genotype, which was associated with enhanced ROS production, such as superoxide, with arsenic exposure (Kao et al., 2003; Pi et al., 2003).

In this study, data showed a significant association between the TC/CC genotype of MnSOD and arsenic-related hypertension. In addition, it was also found that subjects carrying the C allele of MnSOD had 4.5 times the hypertension risk of those with the T/T genotype at low CAE. However with a higher CAE, the risk decreased to 1.6 times the hypertension risk of those with low CAE in the subjects carrying the C allele of MnSOD. It was shown that when seedlings were treated with arsenate, MnSOD mRNA levels increased at 0.1 mM and then dropped at higher concentrations (Kwon & An, 1999). These findings suggest that MnSOD gene polymorphism may modify the ability of mitochondria to defend against low-dose arsenic-induced oxidative stress, but plays a less important role with high arsenic exposure.
However, this study has some limitations. Not all eligible study subjects displayed buffy coat. It was found that the hypertension prevalent in these subjects who have buffy coat according to the former diagnostic criteria of SBP/DBP (160/95 mm Hg) was the same as in our previous study. It is difficult to explain whether the distributions of four genotypes between former and latter study subjects are similar. The information on medication history, to determine whether other medication influenced the blood pressure, is not available, but it might underestimate the hypertension risk. Although 65 subjects (20%) did not have the information of cumulative arsenic exposure, the OR of hypertension for those without arsenic exposure levels was between the OR for the lowest and highest exposure groups (data not shown).

Overall, MnSOD polymorphism significantly increased the risk of hypertension. NADPH oxidase and eNOS polymorphisms were significantly related to hypertension risk with high arsenic exposure. Catalase polymorphism was not associated with hypertension. These findings suggest that the NADPH oxidase variant genotype at high triglyceride levels (Ceriello et al., 2002) and high cumulative arsenic exposure produces oxidative stress, and that the MnSOD and eNOS variant genotype cannot compensate for the antioxidant enzyme increment. These results suggest that the combination of variant genotypes may increase the risk of arsenic-associated hypertension especially in subjects with higher triglyceride levels.

REFERENCES

Kuo, T. L. 1964. Arsenic content of artesian well water in endemic area of chronic arsenic poisoning, 20th ed., Taiwan: Institute of Pathology, National Taiwan University.

