Rutin Inhibits Human Leukemia Tumor Growth in a Murine Xenograft Model In Vivo

Jing-Pin Lin,1 Jai-Sing Yang,2 Jen-Jyh Lin,1,3 Kuang-Chi Lai,4,5 Hsu-Feng Lu,6,7,8 Chia-Yu Ma,9 Rick Sai-Chuen Wu,10 King-Chuan Wu,11 Fu-Shin Chueh,12 W. Gibson Wood,13 Jing-Gung Chung13,14

1School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
2Department of Pharmacology, China Medical University, Taichung 404, Taiwan
3Division of Cardiology, China Medical University Hospital, Taichung 404, Taiwan
4School of Medicine, China Medical University, Taichung 404, Taiwan
5Department of Surgery, China Medical University Beigang Hospital, Yunlin 651, Taiwan
6Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, Taipei 242, Taiwan
7Department of Clinical Pathology, Cheng-Hsin General Hospital, Taipei 110, Taiwan
8Department of Research and Education, Cheng-Hsin General Hospital, Taipei 110, Taiwan
9Department of Food and Beverage Management, Technology and Science Institute of Northern Taiwan, Taipei 112, Taiwan
10Department of Anesthesiology, China Medical University Hospital, Taichung 404, Taiwan
11Department of Anesthesiology, E-DA Hospital/I-Shou University, Kaohsiung 824, Taiwan
12Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
13Department of Pharmacology, University of Minnesota, School of Medicine and Geriatric Research, Education and Clinical Center, Virginia Medical Center, Minneapolis, Minnesota 55455
14Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
15Department of Biotechnology, Asia University, Taichung 413, Taiwan

Received 6 July 2010; revised 25 August 2010; accepted 5 September 2010

ABSTRACT: Numerous studies have shown that rutin has anticancer effects. We have previously reported that rutin induced cell cycle arrest and apoptosis in murine leukemia WEHI-3 cells in vitro and in vivo. However, there are no data showing that rutin inhibits human leukemia HL-60 cells in vivo in a murine xenograft animal model. Human leukemia HL-60 cells were implanted into mice and treated with vehicle (1% DMSO), rutin (120 mg/kg of body weight) or vinblastine (120 μg/kg of body weight). Compounds and agents were injected once every four days intraperitoneally (i.p.) for 36 days. Treatment with 120 mg/kg of rutin or with 120 μg/kg of vinblastine resulted in a reduction of tumor weight and volume when compared...
with the control groups. Tumor size in xenograft mice treated with 120 mg/kg of rutin was significantly smaller than that in the untreated-control group. These novel findings indicate that rutin inhibits tumor growth in a xenograft animal model. Rutin may be useful in treating leukemia but certainly much more research is needed.

© 2011 Wiley Periodicals, Inc. Environ Toxicol 00: 000–000, 2011.

Keywords: rutin; human leukemia HL-60 cells; xenograft transplantation; in vivo

INTRODUCTION

Leukemia is a major cause of death worldwide. In the United States, about 3.7 per 100,000 people die/year of leukemia (Jensen et al., 2004). It is estimated that about four persons per 100,000 people die from leukemia in Taiwan according to reports from the Department of Health, Executive Yuan, R.O.C. (TAIWAN) (http://www.doh.gov.tw/EN2006/index_EN.aspx). Numerous treatments have been used in leukemia patients but the cure rate remains unsatisfactory.

It is well established that increased consumption of plant-based diets can reduce the risk of cancer (Mahmoud et al., 2000; Mutoh et al., 2000; Wenzel et al., 2000; Hsu et al., 2010) but the exact bioactive agents have not been well-established. For example, in colon cancer clinical studies of chemoprevention have been reported using naturally occurring dietary substances (Kelloff et al., 2000). Herbal based dietary supplements contain many phytochemicals such as flavonoids which may contribute to cancer suppression. Rutin, a member of the flavonoid family, possesses anti-inflammatory, antiallergenic, antiviral, and anticarcinogenic properties and it is also a free radical scavenger (La Casa et al., 2009; Kamalakkannan and Stanely Mainzen Prince, 2006). Rutin was found to have chemopreventative activity in several animal models including azoxymethane-induced colon tumorigenesis in mice and rats (Deschner et al., 1993; Matsukawa et al., 1997; Tanaka et al., 1999), dimethylbenz(a)anthracene (DMBA) and N-nitrosomethylurea-treated mammary glands of rats and DMBA-treated skin cancer (Verma et al., 1988). There is no available information on effects of rutin on human leukemia cells in vivo. Therefore, in the present study, we investigated the effects of rutin on human leukemia HL-60 cells in xenografts of mice in vivo.

MATERIALS AND METHODS

Chemicals

Rutin, vinblastine, dimethyl sulfoxide (DMSO), trypan blue and Triton X-100 were obtained from Sigma Chemical Corp. (St. Louis, MO). Rutin and vinblastine were dissolved in 1% DMSO with phosphate buffered saline (PBS).

Cell Culture

The human promyelocytic leukemia cell line (HL-60) was obtained from the Food Industry Research and Develop-

ment Institute (Hsinchu, Taiwan). Cells were plated in 75 cm² tissues culture plates in RPMI-1640 medium supplemented with 10% fetal bovine serum, 2 mM l-glutamine, 100 Units/mL penicillin and 100 μg/mL streptomycin (Invitrogen/Gibco BRL, Grand Island, NY) and cells were maintained at 37°C in a humidified 5% CO₂ and 95% air (Lin et al., 2007; Lin et al., 2009).

In Vivo Tumor Xenograft Model

Eighteen six-week-old female BALB/c nu/nu mice were obtained from the Laboratory Animal Center of the National Applied Research Laboratories (Taipei, Taiwan). The experimental design of the different treatment groups is shown in Fig. 1. Flanks of mice were subcutaneously (s.c.) implanted with HL-60 cells (1 × 10³/100 μL culture medium) for a 12-day incubation for solid tumor growth. Animals bearing tumors were randomly assigned to treatment groups (6 mice per group) and treatment initiated when tumors reached volumes of about 200 mm³ at which time mice were injected intraperitoneally (i.p.) once every four days with 30 μL of 1% DMSO control vehicle, rutin (120 mg/kg) and vinblastine (120 μg/kg). All animal studies were conducted according to institutional guidelines approved by the Animal Care and Use Committee of China Medical University (Taichung, Taiwan) (Kuo et al., 2006; Yang et al., 2008; Ho et al., 2009; Ji et al., 2009; Su et al., 2010).

Mice exhibiting tumors were monitored, counted, and the tumor sizes were measured initially after 12 days, with the final measurement taken five weeks after tumor cell inoculation. After xenograft tumor transplantation, tumor size was individually measured once per four days using calipers and tumor volume was estimated according to the following formula: tumor volume (mm³) = 1/2 × L × W² (L, length; W, width). Body weight was measured at various time points. At the end of the experiment, animals from each group were sacrificed. Tumors were removed, weighed, and tumor volumes were calculated as given above (Ho et al., 2009; Ji et al., 2009).

Statistical Analysis

Data are presented as mean ± SD and compared by using the Student’s t test, and p values less than or equal to 0.05 were considered significant (***, p < 0.001).
RESULTS

Effects of Rutin on Tumor Size and Weight

Female BALB/c nu/nu mice were intraperitoneally injected with HL-60 cells and then each animal was individually treated with 1% DMSO, rutin and vinblastine for different time periods as shown in Figure 1. A representative animal with tumors is shown in Figure 2(A,B). Mean tumor weight and percent inhibition of tumor occurrence are shown in Table I. Rutin and vinblastine significantly decreased tumor weight compared with the control group (Fig. 2 and Table I). Tumor volume also was suppressed as can be seen in Figure 3. Rutin decreased tumor weight by 62.99% of control (Table I). Comparisons of tumors volumes between the control and rutin or vinblastine treatment groups showed that 120 mg/kg rutin clearly reduced tumor volume and weight when compared with control mice (Table I and Fig. 3). Overall, the tumor mass and tumor growth in the xenograft mice was reduced in the rutin group compared to control mice. In Table I, vinblastine (120 µg/kg) also significantly induced tumor inhibition by ~50%.

DISCUSSION

It is well-known that many compounds from natural plants have chemopreventative and chemotherapeutic efficacy in human cancers (Surh, 2003; Eggler et al., 2008; Pan and Ho, 2008). The discovery of phytomedicinal plants as well as elucidations of their underlying mechanism in anticancer activity is important. Rutin, one of the major representatives of flavonoids, is present in many natural plants (Gong et al., 2010), and it has been shown to cause cell cycle arrest and induce apoptosis in many types of human cancer cell lines (Pu et al., 2004; Kamalakkannan and Stanely Mainzen Prince, 2006; Koda et al., 2008; La Casa et al., 2000). Gong et al. found that rutin protected human vein endothelium cells (HUVEC) against H2O2-induced apoptotic cell death (Gong et al., 2010). In another study, it was reported that rutin may reduce the risk of atherosclerosis by inhibiting of low-density lipoprotein oxidation (LDL) oxidation (Milde et al., 2007).

Until this study, there had been no reports on rutin acting on human leukemia HL-60 cells in a xenograft mouse model in vivo. HL-60 cells have been used for several years as a model cell line in leukemia studies (Krige et al., 2008). We hypothesized that rutin could inhibit human leukemia tumors in vivo in xenograft mice. Rutin inhibited tumor growth in HL-60 cell xenograft mice in vivo. These findings differ somewhat from an in vitro study where a similar concentration of rutin (50 µM) had significant cytotoxic effects (over 50% cell death) on proliferation of mouse leukemia WEHI-3 cell line as well as inhibition of BALB/c mice intraperitoneally injected WEHI-3 cells in vivo (Lin et al., 2009). However, tumor volume and weight in xenograft
mice that received 120 mg/kg rutin alone was about 63% less than these of the control group (Fig. 2C). We did not observe toxic effects at the rutin doses administered as evidenced by an absence of changes in body weight (data not shown) or grooming habits.

Tumor volume was less in the rutin treated mice compared with controls. Furthermore, the results showed that tumors that received rutin treatment grew slowly, suggesting that complete regression of HL-60 cells xenograft was not achieved using a single treatment. Therefore, this study provided the first \textit{in vivo} evidence for the efficacy of the flavonoid, rutin, on human leukemia HL-60 cells in xenograft mice. Vinblastine treatment also reduced both tumor weight and volume at a concentration of 1000 times lower than rutin. Multiple rutin treatment may be necessary to achieve complete tumor regression. In conclusion, rutin administered once i.p. per 4 days at 120 mg/kg was effective in reducing the growth of human leukemia HL-60 tumors in a xenograft mouse model. These findings are the first to study examine effects of rutin as a leukemia preventive agent using a leukemia murine xenograft model.

REFERENCES

