Functional Cells Cultured on Microcarriers for Use in Regenerative Medicine Research

Li-Yi Sun¹*, Shinn-Zong Lin²*, Yuan-Sheng Li³, Horng-Jyh Harn⁴#, and Tzyy-Wen Chiou³#

¹Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

²Center for Neuropsychiatry, China Medical University and Hospital and Beigang Hospital, Taichung and Yun-Lin, Taiwan, R.O.C.

³Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, R.O.C.

⁴Department of Pathology, China Medical University and Hospital, Taichung, Taiwan, R.O.C.

*These authors contributed equally to this article

#Correspondence should be sent to:
Prof. Tzuy-Wen Chiou, Ph.D.

Department of Life Science and Graduate Institute of Biotechnology
National Dong Hwa University
No. 1, Sec. 2, Da Hsueh Rd., Shou-Feng, Hualien, Taiwan, ROC
Tel: 886-3-8633638, Fax: 886-3-8630398, E-mail: twchiou@mail.ndhu.edu.tw

And

Dr. Horng-Jyh Harn, MD. Ph.D.
Pathology Department
China Medical University & Hospital
2 Yuh-Der Road, Taichung City, Taiwan, ROC
TEL: 886-4-22052121#2661, Fax: 886-4-22052121#2566, E-mail: dukeham@mail.cmuh.org.tw

Running head: Microcarrier Culture for Regenerative Medicine.
ABSTRACT

Microcarriers have been successfully used for many years for growing anchorage-dependent cells and as a means of delivering cells for tissue repair. When cultured on microcarriers, the number of anchorage-dependent cells, including primary cells, can easily be scaled up and controlled to generate the quantities of cells necessary for therapeutic applications. Recently, stem cell technology has been recognized as a powerful tool in regenerative medicine, but adequate numbers of stem cells that retain their differentiation potential are still difficult to obtain. For anchorage-dependent stem cells, however, microcarrier-based suspension culture using various types of microcarriers has proven to be a good alternative for effective ex vivo expansion. In this article, we review studies reporting the expansion, differentiation, or transplantation of functional anchorage-dependent cells that were expanded with the microcarrier culture system. Thus, the implementation of technological advances in biodegradable microcarriers, the bead-to-bead transfer process, and appropriate stem cell media may soon foster the ability to produce the numbers of stem cells necessary for cell-based therapies and/or tissue engineering.
Keywords: microcarriers, stem cell, expansion, transplantation
INTRODUCTION

Cell transplantation has been widely used in regenerative medicine or tissue engineering applications for many years (32,37,57,100). The most well-established therapeutic applications of cells grown in suspension are blood transfusion and transplantation of hematopoietic stem cells (52,58,66). The key to successful transplantation using cell-based technologies is the preparation of large enough numbers of high-quality cells. Similar to cells grown in suspension, anchorage-dependent cell-based transplantation, such as the use of islet cells for diabetes (6,78) or bone marrow cells for myocardial infarct (31,47,79) or critical limb ischemia (3), requires at least $1-2 \times 10^9$ cells for an adult patient (50-100 kg). Thus, the development of a practical and scalable bioprocess that allows expansion and transplantation of functional cells would potentiate cell-based therapies.

Many culture systems have been designed to expand cells with identical properties (36,87). The key to successful large-scale and long-term cell culture is a well-defined and controlled bioreactor design. Stirred bioreactors (for suspension culture) can overcome several drawbacks of static cultures, including the presence of concentration gradients and
difficulties in monitoring and control. Except for hematopoietic cells (38), however, mammalian cells are usually expanded as anchorage-dependent cells, and therefore development of a culture system with suitable support is necessary. The stirred microcarrier culture system can facilitate the expansion of cells that require attachment, and provides an environment that can easily be controlled and monitored.

In addition, owing to their capacity for self-renewal and differentiation, stem cells such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and other adherent stem/progenitor cells have been recognized for their great potential in regenerative medicine. To realize the potential of stem cell–based therapies, however, technical improvements in the large-scale expansion of stem cells and their differentiated progeny are required. Microcarriers may be an alternative culture system for producing significant quantities of cells that are required for future clinical product development.

MICROCARRIERS

The microcarrier culture system was introduced by van Wezel in 1967 and has been
applied successfully to the growth of anchorage-dependent cells for the production of vaccines or pharmaceuticals, and to expand cell populations (88). This culture system offers the advantage of providing a larger surface area for the growth of anchorage-dependent cells in a suspension culture system, and overcomes several problems with static cultures, including the requirement for large quantities of culture media, space expense, inefficient gas-liquid oxygen transfer, presence of concentration gradients, and difficulties in monitoring and control.

Although the microcarrier culture system has many advantages, the limitation of cell attachment to the microcarrier surface depends on the carrier diameter (typically in the range of 100–400 μm), density (typically between 1.02 and 1.10 g/ml), and chemical composition (48). Today, microcarriers are commonly composed of a dextran matrix, with diethylaminoethyl (DEAE) anion exchange groups being widely used. This group of microcarriers includes Cytodex 1™, Cytodex 2™, and Hillex™. In addition, Cytodex 3™ is also a member of the DEAE-dextran family, but the Cytodex 3™ microcarriers are coated with a thin layer of collagen (48). The other materials that are used for microcarriers include plastic, glass, and cellulose. However, the aforementioned microcarriers are less amenable in tissue engineering or direct transplantation because they cannot be
decomposed by the human body. Trypsin, collagenase, and dispase have been used to retrieve viable cells from non-biodegradable microcarriers for use in cell-based transplantation studies. However, perfect separation of the cells from non-biodegradable microcarriers after enzyme treatment is still difficult. Therefore, development of microcarriers composed of biodegradable chemicals may be an ideal answer.

Recently, microcarriers made of biodegradable substances including gelatin (CultiSpher™ family) (49), collagen (Cellagen™) (30), poly-lactic-co-glycolic acid (PLGA) (85), poly-(L)-lactic acid (PLLA) (19), and hydroxyapatite (26) have raised great interest and been extensively studied for their clinical application in the field of regenerative medicine. In addition, cell-seeded microcarriers can be used to transport cells to the tissue(s) that needs to be repaired.

In this article, the microcarrier culture systems used for primary cells, adult stem cells and embryonic stem cells are reviewed as follows.

PRIMARY CELLS

Microcarriers have the benefit of delivering cells to damaged or degenerated tissue for
repair and restoration of function. Several studies have shown that primary cells cultured on microcarriers and implanted into animal models can cure several disorders for many years. Table 1 summarizes a number of examples of microcarriers that have been used in animal models. These studies have provided crucial information about liver insufficiency (20-22), cartilage repair (35,49,85), skin repair (44,89-90), and Parkinson’s disease (12,14,73).

In 1986, Demetriou et al. first reported a new method for expansion of primary hepatocytes with Cytodex 3™ (dextran matrix with a layer of collagen) and the subsequent hepatocyte transplantation that results in prolonged hepatocyte viability and function in vivo (20,22). In addition, transplantation of microcarrier-attached hepatocytes had a curative effect and provided sufficient metabolic support, detoxification of ammonia, and an increase in the survival rates of liver-damaged rats (54,98). Recently, Xu et al. described the positive effects of intraperitoneal transplantation of Cytodex 3™ microcarrier-attached hepatocytes in rats with acute liver failure induced by d-galactosamine (98). Additionally, a microcarrier-attached hepatocyte-based bioartificial liver also facilitated metabolic support and modified the humoral response in an experimental therapy for liver failure (81,97).
For skin repair, Voigt et al. first reported that Cytodex 3TM microcarrier-attached keratinocytes provide a new multilayered and keratinized epithelium in a full-thickness wound healing model, but the microspheres could not be degraded and induced an inflammatory response (90). Therefore, this group investigated another biodegradable substance, PLGA microcarriers, which were coated with gelatin and recombinant human epidermal growth factor. At 14 days post-transplantation, a new stratified epithelium was detected in the full-thickness wound healing model (89). Recently, Liu et al. produced autologous melanocytes, keratinocytes, and fibroblasts on a large scale using the CultiSpher-GTM microcarrier culture system (41-44), and showed a decrease in the size of recalcitrant venous leg ulcers using autologous keratinocytes (44). Using the novel bioreactor microcarrier cell culture system (Bio-MCCS) of Liu et al., autologous human keratinocytes can be rapidly expanded on one specific type of modified CultiSpher-GTM microcarriers, which are first cultured with autologous dermal fibroblasts that are killed when they reach confluency (43). For cartilage repair, Malda et al. reported that human nasal chondrocytes could be expanded on CultiSpher-GTM microcarriers, and that the collagen content of microcarrier-expanded chondrocytes 14 days after implantation was slightly higher than T-flask-expanded cells (49). In addition to expansion on gelatin-based
microcarriers, expansion of chondrocytes on PLGA microcarriers demonstrated the feasibility of articular cartilage repair in a mouse model (35,85). In addition, gelatin microcarrier–based cell delivery has shown positive clinical results in Parkinson’s disease using human retinal pigment epithelial cells (14,27,93).

Furthermore, other biodegradable natural polysaccharides and FDA-approved hydrogel-based microcarriers have been shown to facilitate adhesion, proliferation, and differentiation of anchorage-dependent cells (e.g., fibroblasts, osteoblasts, and MSCs), and may be useful in clinical regenerative medicine in the musculoskeletal or dermatological fields (91-92).

ADULT STEM CELLS

The technologies described above have encouraged the use of the microcarrier culture system as a powerful tool for expansion of stem cells for clinical use. Moreover, the use of microcarriers in expansion, differentiation, and transplantation has only been explored to a limited extent. Tables 2 and 3 list currently available information about stem cells cultured on microcarriers. Moreover, this system also makes possible the use of continuous
bioprocesses to expand and recover human stem cells for subsequent use in clinical cellular therapies or tissue engineering. As illustrated in Figure 1, there are three suitable bioreactors for stem cell expansion or differentiation on microcarriers and three prospective methods of stem cell recovery as well as direct injection for the repair of tissues such as brain, skin, liver, bone, and cartilage.

Mesenchymal Stem Cells. Owing to their high plasticity (8,15,61,65,68,83), high expansion capacity (65,82-83), and ability to avoid rejection after transplantation (72), these adult stem cells are likely to play a prominent role in regenerative medicine. Although some clinical studies have demonstrated successful tissue engineering with MSCs (8,61,68), technological problems remain, such as a time- and money-consuming expansion phase due to a long expansion period and a labor-intensive process. Therefore, the development of bioreactors that allow monitoring, control, and automation of the cell culture process will be decisively important.

The ability of MSCs to attach, proliferate, and differentiate on macroporous microcarriers in spinner culture has been confirmed (71,95,99) (Figure 2). The culture of MSCs on microcarriers was first explored by Wu et al. in 2003 (95); the results showed that 7 days of cultivation yielded a 10-fold increase in viable cells in spinner culture, and
that the average lactate yield from glucose consumption in the spinner culture was only 1.63, which is lower than that in stationary culture (2.44). Additionally, after growth in the spinner culture for 12 days, the MSCs maintained the characteristics of stem cells (95).

Recently, the effect of porcine bone marrow mesenchymal stem cell (BMMSC) proliferation using three types of commonly available Cytodex™ microcarriers was examined by Frauenschuh et al. The results showed that Cytodex 1™ microcarriers promoted a higher level of cell attachment and proliferation compared with Cytodex 2™ and 3™ (29). In addition, this group also demonstrated increased colonization of microcarriers after carrier addition in a 1:1 ratio after almost all microcarriers had become confluent (bead-to-bead transfer) (29). Recently, the microcarrier culture scalability of ear MSCs was expanded with bead-to-bead transfer, and cells maintained their potential for differentiation (75). Also, addition of 30% fresh medium containing microcarriers every 3 days provided decreased production of lactate from glucose and continuous proliferation of goat MSCs on microcarriers (76). In addition, a more homogenous cell distribution on the microcarriers was obtained as a result of bead-to-bead transfer (76). Based on the use of bead-to-bead transfer, the available area can be extended and the culture of anchorage-dependent cell can be prolonged by free cells colonizing from old beads to fresh
Recently, adult MSCs have been proposed as attractive candidates for regenerative therapy of connective tissues. MSC-seeded microcarriers may simplify and enhance the performance of tissue engineering approaches for cartilage and bone repair. Rubin et al. reported a strategy for the proliferation and differentiation of adipose-derived stem cells on CultiSpher-G™ microcarriers that would allow induction of differentiation ex vivo, precise placement of cells, and correct tissue architecture (71). In addition, Yang et al. reported that short-term direct subcutaneous transplantation of BMMSCs expanded on CultiSpher-S™ microcarriers was associated with significantly less apoptosis than trypsinized control cells, and that induction of de novo trabecular bone formation in vivo occurred in the long term (99).

In addition to the CultiSpher™ family, hydroxyapatite microparticles—another type of biodegradable microcarrier that varies in size and microporosity—were evaluated in vitro and in vivo for their suitability for use as a carrier in an injectable tissue-engineered bone filler. Fischer et al. showed that both the size and microporosity of nonporous hydroxyapatite microparticles affect in vivo bone formation by cultured mesenchymal progenitor cells. The diameter particle size range of 212- to 300-μm is optimal for use as
carriers of cultured goat mesenchymal progenitor cells for the \textit{in vivo} production of bone tissue (26).

In some specific cases, MSCs can be cultured on microcarriers in a microgravity environment modeled by a rotary cell culture system (51,102). Zayzafoon et al. first indicated that microgravity modeled by a rotating wall vessel bioreactor inhibits osteoblastic differentiation of human MSCs on plastic microcarriers and induces the development of an adipocytic lineage phenotype (102). After one year, Meyers et al. confirmed that reduced osteoblastogenesis and enhanced adipogenesis of human MSCs on plastic microcarriers in modeled microgravity were mediated by RhoA and cytoskeletal disruption (51). These reports suggest a possible reason for the reduced bone mass of the human body after prolonged time in space, but also imply that this culture system cannot maintain the differentiation potential of MSCs.

\textit{Neural Stem Cells}. Kallos and Behie first reported the growth and inoculation conditions for the large-scale expansion of mammalian neural stem cells in suspension bioreactors (33). These investigators showed that optimization of pH of the medium and inoculation conditions is critical for robust cell proliferation. The best growth characteristics for mammalian neural stem cells were obtained with a pH range of 7.1 to
7.5, a high oxygen level (20\%), and low osmolarity of the medium (below 400 mOsm/kg).

Kallos and co-workers also proposed optimal serial passaging protocols that would allow mammalian neural stem cells to be grown effectively in suspension culture (34). For the first time, this group was able to grow mammalian neural stem cells on a larger scale in suspension culture and maintain their stem cell characteristics.

Pancreatic Stem Cells. Adult pancreatic stem cells can be grown for more than 140 passages while maintaining the expression of typical stem cell markers (39). Serra et al. evaluated two different culture strategies, including cell aggregated culture and the microcarrier culture system. The use of a microcarrier support (Cytodex 1 or Cytodex 3) promoted the expansion of cell populations that retained their self-renewal ability, cell markers, and differentiation potential, allowing them to differentiate into adipocytes (77). In addition, although both Cytodex 1 and Cytodex 3 could sustain cell expansion, Cytodex 3 was a better substrate for the promotion of cell adherence and growth.

Progenitor Cells. Melero-Martin et al. reported that the use of CultiSpher-G microcarriers resulted in a 17-fold expansion of chondro-progenitor cells grown in batch cultures (50). In addition, chondro-progenitor cells were capable of undergoing bead-to-bead migration, which allowed subcultivation without a harvesting step. In
addition to chondro-progenitor cells, Sugo and Ogawa also reported that rat bone marrow cells grown on hydroxyapatite microcarriers maintained the potential to differentiate into osteoblasts, and the cell proliferation was more rapidly in the case of the hydroxyapatite microcarrier than in the case of hydroxyapatite disk or T75 flasks (80). Barrias et al. also reported that bone marrow stromal cells could grow and differentiate into osteoblastic lineage cells when expanded on calcium titanium phosphate microspheres (7).

Hematopoietic Stem/Progenitor Cells. Hematopoietic stem/progenitor cells have been expanded or differentiated with or without co-culture with bone marrow cells grown in microcarrier cultures (23,74,101). Recently, Chiu et al. demonstrated that CD34+ human umbilical cord blood progenitors are capable of trans-differentiation to yield a vascular endothelial cell phenotype and that they could assemble into three-dimensional tissue structures in rotary wall vessels when expanded with or without microcarrier beads (17).

EMBRYONIC STEM CELLS

Recently, owing to the pluripotent differentiation potential of human ESCs that are derived from the inner cell mass of blastocysts (86), many groups have suggested that
human ESCs have the potential to treat many diseases, including myocardial infarct (53), diabetes (62), and Parkinson’s disease (10,18,70). However, both mouse ESCs and human ESCs are adherent cells and uniquely grow as colonies. In addition, ESCs are typically grown on a layer of inactivated mouse embryonic fibroblasts (MEFs) that function as feeder cells and maintain the ESCs in an undifferentiated state, so feeder cell are commonly realized a necessary for ESC culture (86). Replacement of MEFs with non-xenogeneic human fibroblasts was shown to support human ESC growth as well (67). In addition, recent studies have described the successful use of feeder-free (with feeder-conditioned medium but without feeder cell co-culture) and feeder-independent systems (without conditioned medium or feeder co-culture) with appropriate extracellular matrix molecules, such as Matrigel™, laminin, fibronectin, collagen IV, and vitronectin, for human ESC culture (4-5,46,69,96). Thus, the current methods for scaling up ESC culture using microcarriers have focused on the extracellular matrix molecules present on the surface of microcarriers.

In 2005, Fok and Zandstra first reported a method in which glass-coated styrene microcarriers and Cytodex 3™ were used to establish a feeder-free microcarrier culture system for mouse ESCs, which resulted in shorter doubling times than substrate-free
aggregate cultures grown in suspension (28). The effects of inoculation of mouse ESCs and the concentration of Cytodex 3^{TM} on cell growth and metabolism were analyzed by Abranches et al. (1). After seeding, the cells typically exhibited a growth curve consisting of a short death or lag phase followed by an exponential phase leading to a maximum cell density of $2.5-3.9 \times 10^6$ cells/mL and a maximum specific growth rate of 1.2 day$^{-1}$ (1). In addition, 46C mouse ESCs cultured on two different microcarriers were compared by Fernandes et al. (24). The maximal fold increase in the population of these mouse ESCs cultured on macroporous Cultispher-S^{TM} was higher than that of cells cultured on Cytodex 3^{TM}, but the maximum specific growth rate was lower when cells were grown in serum-containing conditions (24).

It is possible to establish an economical and c-GMP-compliant microcarrier system to produce human fibroblasts to support clinical-grade human ESC culture. Phillips et al. recently demonstrated the efficient expansion of clinical-grade human fibroblasts on polystyrene-based cationic trimethyl ammonium–coated microcarriers (Hillex II$^{\text{TM}}$, SoloHill Engineering, Inc.) using c-GMP reagents (64). Notably, while retaining pluripotency, the extended self-renewal and expansion (for more than five passages) of human ESCs were supported by microcarrier-expanded fibroblasts and their conditioned...
medium. The feeder-free microcarrier system can be used to expand human ESCs as well. Oh et al. demonstrated that Matrigel™-coated cellulose microcarriers allow routine passaging and stable propagation of human ESCs without differentiation and maintenance of pluripotent markers such as oct-4, SSEA4, and TRA-1-60 (59). Recently, Fernandes et al. established a feeder- and Matrigel™-free microcarrier system for growth of human ESCs with continuous agitation (25). This report describes a promising scale-up system for expansion of human ESCs for use in clinical therapy and research. In addition, Lock et al. established a Matrigel™-coated HySphere™ (collagen-coated microcarriers)-based microcarrier bioreactor for generating therapeutically useful quantities of endoderm progeny including pancreatic islet cells and liver cells that were differentiated from human ESCs (45).

Moreover, iPSCs derived from several differentiated cell types via ectopic expression of transcription factors such as Oct4, Sox2, Klf4, and C-Myc have been developed over the past 3 years (84). Generally, these cells exhibit a normal karyotype, are similar to ESCs, and maintain the potential to differentiate into lineages of all three germ layers (2). Recently, mouse iPSCs were used in an animal model of Parkinson's disease (94). Although there is no information regarding iPSCs cultured in the microcarrier system, ex
vivo expansion of iPSCs using the microcarrier system for auto-transplantation may be possible.

FUTURE DIRECTIONS AND CONCLUSION

Microcarrier technology can be used to produce large numbers of functional cells that maintain desired properties. Based on the continuing study of biodegradable microcarriers and continuous bioprocesses such as bead-to-bead transfer, further scale-up to produce cells for cell therapy or tissue engineering is possible. Currently, information from in vivo studies is limited and has mostly been focused on adult MSC-seeded microcarriers for regenerative therapy of cartilage or bone defects. Although the in vivo use of ESC-seeded or iPSC-seeded microcarriers has not yet been described, these studies are likely imminent. In conclusion, the microcarrier culture system has great potential as a powerful tool for efficient ex vivo stem cell expansion for future auto-transplantation approaches.
REFERENCES

11. Borg, D. J.; Dawson, R. A.; Leavesley, D. I.; Hutmacher, D. W.; Upton, Z.; Malda,

16. Cherksey, B. D.; Sapirstein, V. S.; Geraci, A. L. Adrenal chromaffin cells on

Chowdhury, J. R. Transplantation of microcarrier-attached hepatocytes into 90%

23. Dowton, L. A.; Ma, D. D. A method for enriching myeloid (CFU-GM) and
erthroid (BFU-E) progenitor cells from human cord blood by accessory cell

Cabral, J. M. Mouse embryonic stem cell expansion in a microcarrier-based stirred

25. Fernandes, A. M.; Marinho, P. A.; Sartore, R. C.; Paulsen, B. S.; Mariante, R. M.;
Castilho, L. R.; Rehen, S. K. Successful scale-up of human embryonic stem cell
42:515-522; 2009.

36. King, J. A.; Miller, W. M. Bioreactor development for stem cell expansion and

42. Liu, J. Y.; Hafner, J.; Dragieva, G.; Burg, G. High yields of autologous living dermal equivalents using porcine gelatin microbeads as microcarriers for

57. Nolan, K.; Millet, Y.; Ricordi, C.; Stabler, C. L. Tissue engineering and

72. Ryan, J. M.; Barry, F. P.; Murphy, J. M.; Mahon, B. P. Mesenchymal stem cells avoid allogeneic rejection. J. Inflamm. (Lond) 2:8; 2005.

Lee, O. K.; Chiou, T. W. Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics 30:251-260; 2009.

89. Voigt, M.; Andree, C.; Kalt, T.; Dormann, S.; Schaefer, D. J.; Walgenbach, K. J.; Stark, G. B. Human recombinant EGF protein delivered by a biodegradable cell

94. Wernig, M.; Zhao, J. P.; Pruszak, J.; Hedlund, E.; Fu, D.; Soldner, F.; Broccoli, V.;

99. Yang, Y.; Rossi, F. M.; Putnins, E. E. Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture. Biomaterials

Table 1. Microcarrier-expanded primary cells for transplantation.

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Microcarrier</th>
<th>Model</th>
<th>Curative effect</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatocytes (Rat)</td>
<td>Cytodex 3™</td>
<td>Liver insufficiency (Rat)</td>
<td>Transplantation of microcarrier-attached normal hepatocytes reduces serum bilirubin levels of Gunn rats.</td>
<td>(22)</td>
</tr>
<tr>
<td>Hepatocytes (Rat)</td>
<td>Cytodex 3™</td>
<td>Liver insufficiency (Rat)</td>
<td>Plasma albumin concentration of albumin-deficient rats progressively increases for 6 days and then declines after transplantation of normal hepatocytes that are microcarrier attached.</td>
<td>(20)</td>
</tr>
<tr>
<td>Hepatocytes (Rat)</td>
<td>Cytodex 3™</td>
<td>Acute liver insufficiency (Rat)</td>
<td>Significantly higher blood glucose levels are observed compared to the levels in control rats that receive injections of microcarriers, liver cells, or medium alone.</td>
<td>(21)</td>
</tr>
<tr>
<td>Hepatocytes (Rat)</td>
<td>Cytodex 3™</td>
<td>Acute liver ischemia (Rat)</td>
<td>A higher caffeine clearance, a higher urea production, and a significantly smaller loss in body weight in comparison to sham-transplanted control rats.</td>
<td>(13)</td>
</tr>
<tr>
<td>Hepatocytes (Rat)</td>
<td>Cytodex 3™</td>
<td>Acute liver insufficiency (Rat)</td>
<td>Survival rate: microcarriers group > vacant microcarriers group</td>
<td>(98)</td>
</tr>
<tr>
<td>Chondrocytes (Human)</td>
<td>CultiSpher-G™</td>
<td>Cartilage repair (Subcutaneous dorsum) (Nude mice)</td>
<td>Microporous gelatin microcarriers are effective matrices for nasal chondrocyte expansion while maintaining the ability of chondrocyte differentiation.</td>
<td>(49)</td>
</tr>
<tr>
<td>Chondrocytes (Rabbits)</td>
<td>PLGA</td>
<td>Cartilage repair (Subcutaneous dorsum) (Mice)</td>
<td>Nine weeks after implantation of chondrocytes with PLGA microcarriers, solid or white cartilaginous tissues form at subcutaneous dorsum.</td>
<td>(35)</td>
</tr>
<tr>
<td>Chondrocytes (Sheep)</td>
<td>PLGA</td>
<td>Cartilage repair (Nude mice)</td>
<td>Chondrocytes cultured on PLGA microspheres were further assessed for cartilage tissue formation in collagen type I gels in nude mice.</td>
<td>(85)</td>
</tr>
<tr>
<td>Keratinocytes (Human)</td>
<td>Cytodex 3™</td>
<td>Full-thickness wound healing model (Nude mice)</td>
<td>Transplantation of microcarrier-attached keratinocytes results in a reconstituted epithelium that is multilayered and keratinized.</td>
<td>(90)</td>
</tr>
<tr>
<td>Keratinocytes (Human)</td>
<td>PLGA</td>
<td>Full-thickness wound healing model (Nude mice)</td>
<td>Approach to expand cultured human keratinocytes and reconstitute the epidermis in full-thickness wounds using a new microspherical transport system</td>
<td>(89)</td>
</tr>
<tr>
<td>Keratinocytes (Human)</td>
<td>CultiSpher-G™</td>
<td>Skin transplants (Human)</td>
<td>Transplantation of microcarrier-attached keratinocytes decreases the size of recalcitrant venous leg ulcers.</td>
<td>(44)</td>
</tr>
<tr>
<td>Cell Type</td>
<td>Microcarrier</td>
<td>Application</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Keratinocytes (Human)</td>
<td>Cytoline 1™</td>
<td>Skin transplants (Human)</td>
<td>Wounds heal in a shorter time and a better condition is achieved with the treatment. Microcarriers only do not have a curative effect.</td>
<td></td>
</tr>
<tr>
<td>Keratinocytes (Human)</td>
<td>Cultispher-G™</td>
<td>Skin transplants (in vitro human skin equivalent model)</td>
<td>Microcarrier-expanded keratinocytes seeded onto the 3D in vitro human skin equivalent model are able to produce a viable epidermis. When keratinocytes are co-cultured with feeder cells on microcarriers, a slightly greater cell yield is observed compared to keratinocytes cultured on microcarriers without feeder cells.</td>
<td></td>
</tr>
<tr>
<td>Keratinocytes (Human)</td>
<td>PLLA</td>
<td>Living skin replacement biotherapy</td>
<td>Allogeneic and xenogeneic fibroblasts neither have nor elicit any noticeable inflammatory or immune reaction during the 14-day experimental period.</td>
<td></td>
</tr>
<tr>
<td>Fibroblasts (Human and Pig)</td>
<td>Cytodex-3™</td>
<td>Hemophilia B (gene therapy) (Rat)</td>
<td>Intraperitoneal transplantation of microcarrier-attached transduced fibroblasts forms aggregates in the peritoneal cavity and exhibits positive immunohistochemical staining for human factor IX up to eight weeks following transplantation.</td>
<td></td>
</tr>
<tr>
<td>Adrenal chromaffin cells (Rat)</td>
<td>Cytodex 3™</td>
<td>Parkinson’s disease (Rat)</td>
<td>Microcarrier-attached cells maintain their effect in reducing rotation for at least eight months, but animals implanted with cells alone show a reduction in rotation that lasted less than three months.</td>
<td></td>
</tr>
<tr>
<td>Adrenal chromaffin cells (Rat)</td>
<td>Cytodex3™</td>
<td>Parkinson’s disease (Rat)</td>
<td>Animals that receive adrenal chromaffin cells-beads show significant behavioral recovery that is sustained over the 12 month test period, but the group that received adrenal chromaffin cells alone only exhibited a significant reduction in the first month.</td>
<td></td>
</tr>
<tr>
<td>Ventral mesencephalon cells (Human and Rat)</td>
<td>Cytodex microcarriers</td>
<td>Parkinson’s disease (Rat)</td>
<td>Microcarriers provide enhanced survival of both rat allograft and human xenograft fetal mesencephalic cells in the rat striatum.</td>
<td></td>
</tr>
<tr>
<td>Retinal pigment epithelial cells (Human)</td>
<td>Gelatin microcarrier</td>
<td>Parkinson’s disease (Rat)</td>
<td>These results further support the possibility that implantation of cultured retinal epithelial cells may be a promising therapeutic option for patients with PD.</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: PLLA, poly-(L)-lactic acid; PLGA, poly-lactic-co-glycolic acid; hRPE, human retinal pigment epithelium; PD, Parkinson’s disease.
Table 2. Expansion of adult stem cells using microcarrier culture.

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Microcarriers</th>
<th>Cell recovery</th>
<th>In vitro differentiation</th>
<th>Notes</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSCs (Human; bone marrow)</td>
<td>Cultispher-G<sup>TM</sup> (Bioractor)</td>
<td>Trypsin-EDTA</td>
<td>Osteogenesis</td>
<td>· After 7 days of cultivation, a 10-fold increase in viable cells is obtained in spinner culture.</td>
<td>(95)</td>
</tr>
<tr>
<td>MSCs (Porcine; bone marrow)</td>
<td>Cytodex 1<sup>TM</sup></td>
<td>Trypsin-EDTA</td>
<td>Osteogenesis</td>
<td>· Bead-to-bead transfer.</td>
<td>(29)</td>
</tr>
<tr>
<td></td>
<td>Cytodex 2<sup>TM</sup></td>
<td></td>
<td>Chondrogenesis</td>
<td>· Bead-to-bead transfer by 1:1 medium with beads after 14 days of cultivation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cytodex 3<sup>TM</sup></td>
<td></td>
<td></td>
<td>· The osteogenic and chondrogenic differentiation of MSCs was confirmed after enzymatic harvest from microcarriers.</td>
<td></td>
</tr>
<tr>
<td>MSCs (Human; adipose)</td>
<td>Cultispher-G<sup>TM</sup> (Bioractor)</td>
<td>Collagenase</td>
<td>Osteogenesis</td>
<td>· After microcarrier culture for one week, direct differentiation to osteo-lineage or adipo-lineage cells on microcarriers is seen.</td>
<td>(71)</td>
</tr>
<tr>
<td>MSCs (Rat; bone marrow stromal cells)</td>
<td>Cultisphere-S<sup>TM</sup> (Bioractor)</td>
<td>Not tested</td>
<td>Osteogenesis</td>
<td>· Transplantation.</td>
<td>(99)</td>
</tr>
<tr>
<td></td>
<td>Cytodex 1<sup>TM</sup></td>
<td></td>
<td>Chondrogenesis</td>
<td>· Beads coated with 5 ng/mL fibronectin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cytopore 2<sup>TM</sup></td>
<td></td>
<td>Adipogenesis</td>
<td>· Significantly less apoptosis in the short term <i>in vivo</i>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· After three weeks of microcarrier culture, higher osteocalcin and alkaline phosphatase gene expression of undifferentiated MSCs compared to plate cultures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· Induced bone formation <i>in vivo</i> in the long term after direct subcutaneous transplantation of BMMSCs-Cultisphere S.</td>
<td></td>
</tr>
<tr>
<td>MSCs (Goat; bone marrow)</td>
<td>Cytodex 1<sup>TM</sup> (Bioractor)</td>
<td>Not tested</td>
<td>Not tested</td>
<td>· Bead-to-bead transfer.</td>
<td>(76)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· Bead-to-bead transfer by 30% medium with beads per 3 days.</td>
<td></td>
</tr>
<tr>
<td>MSCs (Rat; outer ear)</td>
<td>Cultisphere-S<sup>TM</sup> (Bioractor)</td>
<td>Dipease</td>
<td>Osteogenesis</td>
<td>· Bead-to-bead transfer.</td>
<td>(75)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chondrogenesis</td>
<td>· Bead-to-bead transfer by 1:1 medium with beads when MSC culture reached confluence.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adipogenesis</td>
<td>· Lower <i>in vitro</i> function for osteogenesis and adipogenesis compared to passage 0.</td>
<td></td>
</tr>
<tr>
<td>MSCs (Human; bone marrow)</td>
<td>Gelatin-grafted-gellan (TriG) microcarriers</td>
<td>Not tested</td>
<td>Osteogenesis</td>
<td>· Transplantation.</td>
<td>(92)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· The formation of osteogenic matrices is better achieved in hydrogel-encapsulating cell-laden TriG microcarriers than in hydrogels.</td>
<td></td>
</tr>
</tbody>
</table>
MSCs

| (Human; bone marrow) Plastic microcarriers (Rotary wall vessels) | Not tested | Osteogenesis • Microgravity. | Adipogenesis • Microgravity inhibits osteogenic differentiation of MSCs but induces adipogenic differentiation. |

Mesenchymal progenitor cells

| (Goat; bone marrow) Hydroxyapatite (Bacteriological grade 6-well plates) | Not tested | Not tested • Transplantation. | Adipogenesis • Subcutaneous implantation in nude mice shows abundant bone formation after four weeks with a 212 to 300-μm diameter particle range, but no bone formation is apparent with the 500 to 706-μm diameter range particles. |

Bone marrow stromal cells

| (Rat; bone marrow) Calcium titanium phosphate (Untreated 96-well plates) | Not tested | Osteogenesis • Direct proliferation and osteo-differentiation of bone marrow stromal cells on calcium titanium phosphate microcarriers. |

Bone marrow cells

| (Rat; bone marrow) Hydroxyapatite (Spinner flasks) Trypsin | Osteogenesis • The cells on the hydroxyapatite microcarriers have a higher glucose consumption than those grown in T-flasks at the early stages of culture, and maintain the potential to differentiate into osteoblasts. |

Chondro-progenitor cells

| (Bovine; cartilage slices) CultiSpher-G™ (Spinner flasks) | Not tested | Chondrogenesis • Bead-to-bead transfer. • Bead-to-bead transfer by 1:15 medium with beads after 5 days of cultivation. • Direct proliferation and chondro-differentiation of chondro-progenitor cells on microcarriers. |

Pancreatic stem cells

| (Rat; exocrine pancreas) Cytodex 1™ Cytodex 3™ (Spinner flasks) Trypsin | Adipogenic • Cytodex 3 provides a better substrate for the promotion of cell adherence and growth. • After cells are enzymatically harvested from the carriers, cells maintain their adipo-lineage potential. |

Abbreviation: MSCs, mesenchymal stem cells.
Table 3. Expansion of embryonic stem cells (ESCs) using the microcarrier culture system.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Microcarriers (Bioreactor)</th>
<th>Cell recovery</th>
<th>In vitro differentiation</th>
<th>Notes</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCs (Mouse; CCE, R1, M8, 9J)</td>
<td>Glass-coated styrene microcarriers, Cytodex 3™ (Spinner flask)</td>
<td>Trypsin-EDTA</td>
<td>Cardiomyogenesis</td>
<td>Hematogenesis</td>
<td>Feeder-free.</td>
</tr>
<tr>
<td>ESCs (Mouse; S25)</td>
<td>Cytodex 3™ (Spinner flask)</td>
<td>Trypsin</td>
<td>Neurogenesis</td>
<td>Microcarriers were coated with collagen.</td>
<td>(1)</td>
</tr>
<tr>
<td>ESCs (Mouse; 46C-GFP)</td>
<td>Cytodex3™, Cultispher-S™ (Spinner flask)</td>
<td>Collagenase</td>
<td>Cardiomyogenesis</td>
<td>Feeder-free.</td>
<td>(24)</td>
</tr>
<tr>
<td>ESCs (Human; ESI-017)</td>
<td>Hillex II™ (Spinner flask)</td>
<td>Collagenase</td>
<td>Osteogenesis</td>
<td>Microcarriers were pre-treated with MEF-conditioned medium.</td>
<td>(64)</td>
</tr>
<tr>
<td>ESCs (Human; ESI-017, Mouse; R1pdx-laczKO)</td>
<td>Hillex-II™ (Spinner flask)</td>
<td>Collagenase</td>
<td>Not tested</td>
<td>Feeder-free.</td>
<td>(63)</td>
</tr>
<tr>
<td>ESCs (Human; H9)</td>
<td>Cytodex 3™ (Spinner flask)</td>
<td>Trypsin</td>
<td>Osteogenesis</td>
<td>Feeder- and Matrigel™-free.</td>
<td>(25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neurogenesis</td>
<td>After 14 days of cultivation, a seven-fold increase in cell concentration</td>
<td></td>
</tr>
</tbody>
</table>
is obtained with the spinner culture.

- ESCs expanded in stirred conditions using serum-free medium retain their pluripotency and the ability to commit to the neural lineage.

<table>
<thead>
<tr>
<th>ESCs</th>
<th>HyQSphere<sup>TM</sup></th>
<th>Collagenase Type IV</th>
<th>Endoderm differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Human; H1, H9)</td>
<td>(Spinner flask)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Collagen-coated microcarriers were coated with Matrigel<sup>TM</sup>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Definitive endoderm differentiation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>More than 80% of differentiated ESCs co-express endoderm markers (FOXA2 and SOX17).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESCs</th>
<th>Cytodex 3<sup>TM</sup></th>
<th>Collagenase</th>
<th>Dispase</th>
<th>Not tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Human; H1, H9)</td>
<td>(Spinner flask)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The beads were coated with Matrigel or seeded MEFs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Karyotype is normal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Screened 12 kinds of commercially-available suitable microcarriers and claimed hESC recovery improves when cryopreserved on microcarriers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESCs</th>
<th>Cellulose-coated matrigel<sup>TM</sup></th>
<th>TrypLE enzyme</th>
<th>Cardiomyocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Human; HES-2, HES-3)</td>
<td>(Ultralow attachment 6-well plates)</td>
<td></td>
<td>The beads were coated with Matrigel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Authors have developed an easy and robust method for maintaining undifferentiated ESCs in three-dimensional suspension cultures achieving two- to four-fold higher cell densities than those in two-dimensional colony cultures.</td>
</tr>
</tbody>
</table>

Abbreviation: MEFs, mouse embryonic fibroblasts.
Figure 1. Schematic of stem cells grown in different microcarrier culture systems and the use of stem cell-seeded microcarriers. After detachment from culture dishes or T-flasks, stem cells can be cultured on microcarriers in spinner flasks, a WAVE bioreactor, or a microgravity system such as a rotary cell culture system (RCCS). After expansion or differentiation, cell-seeded microcarriers can be directly injected into the human body, or cells can be enzymatically recovered from microcarriers for use in cell therapy or tissue engineering. ESC, embryonic stem cells; MSC, mesenchymal stem cells.

Figure 2. The location and proliferation of BMMSCs on CultiSpher-G microcarriers after 7 days with an initial density of 5×10^4 cells/mL and a microcarrier concentration of 3 g/L. Samples from (A, D) 5 hours, (B, E) one day, and (C, F) seven days stained with Hoechst 33342 dye (D, E, F). Starting on day 3, 50% medium changes were performed every 3 days. Scale bar = 500 μM. The ALP activity of BMMSCs undergoing direct osteo-differentiation in stirred microcarrier cultures under osteogenic conditions is shown by ALP staining (G). The lipid spheres in BMMSCs undergoing direct
adipo-differentiation in stirred microcarrier cultures under adipogenic conditions is shown with oil red O staining (H). Scale bar = 200 μM. Abbreviations: ALP, alkaline phosphatase; BMMSCs, bone marrow mesenchymal stem cells.