MOSAIC RING CHROMOSOME 4 IN A CHILD WITH MILD DYSMORPHISMS, CONGENITAL HEART DEFECTS AND DEVELOPMENTAL DELAY

BY C.-P. CHEN 1,2,3,4,5,6, S.-P. LIN 2,7, Y.-N. SU 8, S.-R. CHERN 2, F.-J. TSAI 4,9, P.-C. WU 1, C.-C. LEE 1 AND W. WANG 2,10

A 2-year-old girl was the second child of non-consanguineous parents. The mother was 36 years old and the father 56 years old. She was referred for short stature and mild lymphedema of hands and feet with a clinical implication of Turner syndrome. The family history was unremarkable. She was delivered at 36 weeks of gestation with a body weight of 3,000 g in a normal pregnancy. Physical examination at two years of age revealed developmental delay, a head circumference of 42.7 cm (< 3rd centile), a body length of 81 cm (5th centile) and a body weight of 11.5 Kg (50th centile). She had short stature, psychomotor retardation, microcephaly, hypotonia, a round face, large low-set ears, a depressed nasal bridge, a short nose with anteverted nares, and mild lymphedema of hands and feet (Fig. 1). The external genitalia were normal. Echocardiography showed atrial septal defect and ventricular septal defect. Laryngoscopy revealed left vocal palsy. Brain and abdominal sonographic findings were unremarkable. Peripheral blood chromosomal analysis of the patient showed a karyotype of 46,XX,r(4)(p16.3q35.2)[82]/45,XX,-4[7]/47,XX,r(4)(p16.3q35.2),+r(4)(p16.3q35.2)[4]/46,XX, dic r(4)(p16.3q35.2)[3]/46,XX,broken r(4) (p16.3q35.2)[4]dn (Fig. 2). Both paternal and maternal chromosomal analyses were normal. Array comparative genomic hybridization (aCGH) was performed to delineate the size of deletion. Bacterial artificial chromosome (BAC)-based aCGH using CMDX BAC-aCGH CA3000 chips (CMDX, Irvine, CA, USA) showed a terminal deletion of 4q [4q35.2 (RP11-213A19→RP11-521G19)] but no genomic imbalance of the 4p16.3 probes of RP11-107698, RP11-69L7, RP11-386I15, RP11-585J22, RP11-572O17, CTD-2269L21, RP11-709N10, RP11-478C1, RP11-478C5 and RP11-357G3 (Fig. 3). The probe CTD-2269L21 covers Wolf-Hirschhorn syndrome (WHS) candidate gene 1 (WHSC1), and the probe RP11-709N10 covers part of WHSC1 and the entire WHSC2. Oligonucleotide-based aCGH using Oligo HD Scan (CMDX, Irvine,
CA, USA) further showed a 5.1-Mb deletion of 4q [4q35.1q35.2 (186,182,721-191,273,063)×1] (Fig. 4). Polymorphic DNA marker analysis using DNA marker D4S2688 (4q35.2) revealed a paternal origin of the deletion.

The present case of mosaic ring chromosome 4 was associated with loss of the ring, double copies of the ring, dicentric double rings and broken rings due to instability of the ring chromosome. Loss of the ring and double copies of the ring can be caused by non-disjunction. Dicentric double rings and broken rings can be formed during the single-chromatid ring chromosome replication and separation of the centromeres at meiosis (7). If there is one sister chromatid exchange (SCE), a double ring is generated; and if there are two SCEs, the two rings become interlocked in the same direction of rotation, and the interlocked rings may break causing a broken ring and a ring when each centromere being tugged to the opposite poles at anaphase (7).

The present case manifested psychomotor retardation, microcephaly, developmental delay, congenital heart defects and mild facial dysmorphism, but did not have characteristic features of WHS such as “Greek warrior helmet” appearance on face and facial clefts. Some cases of ring chromosome 4 had clinical features of WHS due to terminal de-
Figure 2: Partial G-banding karyotypes of peripheral blood lymphocytes show (A) ring chromosome 4, or r(4), (B) dicentric ring chromosome 4, or dic r(4), (C) double copies of r(4), and (D) broken r(4) in addition to normal chromosome 4.

Figure 3: Bacterial artificial chromosome (BAC)-based array comparative genomic hybridization (aCGH) shows a terminal deletion of 4q35.2.
The present case, however, had intact WHSCR on the ring chromosome 4 and presented a mild phenotype of terminal 4q deletion syndrome.

The terminal 4q deletion syndrome, a rare genetic event associated with a distinctive phenotype dependent on the size of the deletion, is characterized by multiple abnormalities including a dysmorphic skull, facial dysmorphisms such as hypertelorism, micrognathia, cleft palate, a short nose with anteverted nares, a smooth philtrum, full cheeks, epicanthic folds, up-slanting palpebral fissures, developmental delay, limb and digit deformities, congenital heart defects, a varying degree of psychomotor retardation, speech delay, learning difficulties, aggressive behavior and short attention span (3, 9, 13, 15, 17-19, 21-23). Lin et al. (12) suggested that deletion of 4q31-q33 is responsible for a more severe phenotype. Robertson et al. (13) suggested that the minimal critical region is within band 4q31. Tsai et al. (21) suggested that genes involved in heart and palate development lie distal to 4q34.2, and the critical region for more severe mental retardation lies proximal to 4q34.2. Keeling et al. (9) suggested that 4q33 is the critical region in 4q terminal deletion syndrome, and deletions distal to this region can be associated with less severe clinical findings. The present case had a 5.1-Mb deletion of the 4q35.1-q35.2 region encompassing the genes of DUX4, FGR1, FGR2, TUBB4Q, CYP4V2, KLKB1, F11, MTNR1A,
FAT, ZFP42, TRIML1 and HSP90AA4P. Overexpression of the genes FGR1 and FGR2 is associated with facioscapulohumeral muscular dystrophy. MTNR1A (OMIM 600665) is a high-affinity melatonin receptor that mediates major biologic functions of melatonin. Genetic variations in the melatonin receptor genes have been shown to be associated with autism and bipolar affective disorder (1, 4, 8). HSP90AA1 (OMIM 140571) is a heat-shock protein that plays a key role in signal transduction, protein folding, protein degradation and morphological evolution (5). TRIML1 is a key regulator in early embryogenesis (20), and ZFP42 has the function of embryonic stem cell differentiation (14). While the mosaicism of r(4) can affect the phenotype, the deleted 5.1 Mb at 4q35.1-q35.2 and clinical features of this patient may provide further insight into characteristic phenotype of the terminal 4q deletion syndrome.

ACKNOWLEDGEMENTS

This work was supported by research grants NSC-96-2314-B-195-008- MY3, NSC-97-2314-B-195-006-MY3 and NSC-99-2628-B-195-001- MY3 from the National Science Council, and MMH-E-100-04 from Mackay Memorial Hospital, Taipei, Taiwan.

REFERENCES

ADDRESS FOR CORRESPONDENCE:
Chih-Ping Chen, MD
Department of Obstetrics and Gynecology, Mackay Memorial Hospital
92, Section 2, Chung-Shan North Road, Taipei, Taiwan
Tel: +886 (2) 2543 3535
Fax: +886 (2) 2543 3642; +886 (2) 2523 2448
E-mail: cpc_mmh@yahoo.com