Molecular Simulation

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/gmos20

Treat Alzheimer's disease by traditional Chinese medicine?

Mao-Feng Sun a b, Tung-Ti Chang a b, Kuan-Chung Chen a, Shun-Chieh Yang a, Kai-Wei Chang a, Tsung-Ying Tsai a, Hsin-Yi Chen c, Fuu-Jen Tsai c d, Jaung-Geng Lin a & Calvin Yu-Chian Chen a c e f

a Laboratory of Computational and Systems Biology, School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
b Department of Acupuncture, China Medical University Hospital, Taichung, Taiwan, ROC
c Department of Bioinformatics, Asia University, Taichung, 41354, Taiwan, ROC
d Department of Medical Genetics, China Medical University, Taichung, 40402, Taiwan, ROC
e Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
f Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

Available online: 26 Aug 2011

To cite this article: Mao-Feng Sun, Tung-Ti Chang, Kuan-Chung Chen, Shun-Chieh Yang, Kai-Wei Chang, Tsung-Ying Tsai, Hsin-Yi Chen, Fuu-Jen Tsai, Jaung-Geng Lin & Calvin Yu-Chian Chen (2011): Treat Alzheimer's disease by traditional Chinese medicine?, Molecular Simulation, 37:11, 923-931

To link to this article: http://dx.doi.org/10.1080/08927022.2011.577074

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Treat Alzheimer’s disease by traditional Chinese medicine?

Mao-Feng Sunab, Tung-Ti Changab, Kuan-Chung Chen, Shun-Chieh Yang, Kai-Wei Chang, Tsung-Ying Tsai, Hsin-Yi Chen, Fuu-Jen Tsai, Jaung-Geng Lin and Calvin Yu-Chian Chen

aLaboratory of Computational and Systems Biology, School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan, ROC; bDepartment of Acupuncture, China Medical University Hospital, Taichung, Taiwan, ROC; cDepartment of Bioinformatics, Asia University, Taichung 41354, Taiwan, ROC; dDepartment of Medical Genetics, China Medical University, Taichung 40402, Taiwan, ROC; eDepartment of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; fComputational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

(Received 28 December 2010; final version received 20 March 2011)

Upregulated phosphodiesterase 4D (PDE4D) disrupts the regulation of calcium ion channel in the central nerve system, and hence it is considered as one of the causes of Alzheimer’s disease. We employed structure-based drug design techniques and the world’s largest traditional Chinese medicine (TCM) database for identifying potential TCM-based PDE4D inhibitors. We then applied multiple linear regression (MLR) and support vector machine (SVM) for quantitative structure–activity relationship model, as well as for molecular dynamics simulation analysis. Screening results suggested that metal cations, Zn$^{2+}$ and Mg$^{2+}$, played key roles in mediating stable protein–ligand interactions with the ligand-binding residues, Asp367 and Asp484. In addition, each ligand was shown to interfere with the active residue His326 that suggested inhibitory effects. The MLR and SVM prediction models further implied the PDE4D inhibitory effect of each TCM compound. The molecular simulation further suggested the binding stability of each compound in the PDE4D binding site. We identified three TCM compounds, such as mumefural, 2-O-feruloyl tartaric acid and kainic acid, as potential PDE4D inhibitors. In addition, we further identified the key interaction features associated with the protein–ligand-binding stabilities.

Keywords: traditional Chinese medicine; docking; support vector machine; molecular dynamics; Alzheimer’s disease

1. Introduction

Phosphodiesterase 4D (PDE4D) is a key regulator of cell growth, differentiation, survival and inflammatory processes [1]. The protein hydrolyses intracellular cyclic adenosine monophosphate (cAMP) which is a key second messenger involved in numerous hormones and neurotransmitter signalling cascades [2]. The cAMP is an important second messenger which, in response to various hormone stimuli, regulates the protein kinase A-dependent signalling pathways as well as the Ca$^{2+}$ ion channel. Hence, the inhibition of PDE4D affects cAMP concentration, which subsequently affects the downstream biological pathways such as proliferation, metabolism, signalling transduction and neurotransmission. PDE4D inhibitors have been developed in an attempt to resolve inflammatory diseases such as chronic obstructive pulmonary disease, bronchopulmonary dysplasia and asthma, as well as neurodegenerative diseases such as Alzheimer’s disease [3,4]. This study focuses on the discovery and potential application of novel PDE4D inhibitors as a cure for Alzheimer’s disease.

Computer-aided drug design (CADD) has been used to screen, design and analyse various drugs or drug leads from a selected compound database. In this study, we investigated the drug research potentials of traditional Chinese medicine (TCM) using the CADD methods. Although TCM has been recognized as an alternative treatment, individual TCM compounds were less studied. Nevertheless, previous reports further supported the TCM drug research potentials on anti-viral, anti-inflammatory and anti-tumour [5–16]. Hence, we employed CADD and the world’s largest TCM database [17] to investigate TCM-based PDE4D inhibitors for Alzheimer’s disease treatment caused by an abnormal PDE4D upregulation. Hence, we employed the compounds from the TCM Database@Taiwan [17], the current world’s largest small molecule database on TCM, for the identification of potential PDE4D inhibitor compounds. The activities of each compound were validated with two quantitative structure–activity relationship (QSAR) models and supported by molecular dynamics (MD) simulations.

2. Materials and methods

2.1 Data collection

The X-ray structure of the PDE4D complex (PDB ID: 3G4G) [4] and more than 20,000 TCM compounds
downloaded from the TCM database [17] were used for virtual screening. The predictive models were established with a total of 16 compounds from Card’s study [18]. The ionisation state of the ionising functional groups for all compounds was modified using Accelrys Discovery Studio 2.5 (DS 2.5) [19].

2.2 Docking

The docking simulation with the CHARMM force field [20] was performed by the Flexible Docking module [21] of DS 2.5, and the cAMP binding site was defined by the volume of co-crystallised compound, RS-25344. The natural substrate of the PDE4D, cAMP, was also used as control. Binding energy was calculated by the Calculate Binding Energies module [22] of DS 2.5.

Table 1. Docking results and predicted pIC50 for the top TCM compounds and cAMP.

<table>
<thead>
<tr>
<th>Name</th>
<th>Binding energy</th>
<th>Predicted pIC50</th>
<th>SVM</th>
<th>MLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mumefural</td>
<td>-460.19</td>
<td>Active</td>
<td>5.92</td>
<td></td>
</tr>
<tr>
<td>2-O-Feruloyl tartaric acid</td>
<td>-443.67</td>
<td>Active</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td>Kainic acid</td>
<td>-393.02</td>
<td>Active</td>
<td>7.76</td>
<td></td>
</tr>
<tr>
<td>cAMPb</td>
<td>-347.35</td>
<td>Active</td>
<td>8.62</td>
<td></td>
</tr>
<tr>
<td>4-O-Caffeoylquinic acid</td>
<td>-335.37</td>
<td>Active</td>
<td>4.64</td>
<td></td>
</tr>
<tr>
<td>4-O-Feruloylquinic acid</td>
<td>-330.58</td>
<td>Active</td>
<td>2.01</td>
<td></td>
</tr>
<tr>
<td>Digallic acid</td>
<td>-328.18</td>
<td>Active</td>
<td>8.49</td>
<td></td>
</tr>
</tbody>
</table>

a. Active when predicted pIC50 > 4.
b. Control.

Figure 1. The scaffold of (a) mumefural, (b) 2-O-feruloyl tartaric acid, (c) kainic acid, (d) digallic acid, (e) 4-O-caffeoylquinic acid, (f) 4-O-feruloylquinic acid and control and (g) cAMP.
2.3 QSAR modelling

The QSAR prediction models were established using both support vector machine (SVM) and multiple linear regressions (MLRs) to predict the bioactivity of TCM compounds. The SVM model was established using LibSVM constructed by Chang and Lin [23], and the MLR function was established using MATLAB [24].

Sixteen compounds from Card’s study [18] were used as a training set of prediction models with activity descriptor of pIC$_{50}$ (log(1/IC$_{50}$). The genetic function approximation (GFA) module [25] of DS 2.5 was used to select the suitable molecular descriptors for the prediction models with the training set of 16 molecules. The fitness of individual model for all the possible QSAR models was estimated by the squared correlation coefficient (R^2). Cross-validation test was used to validate the prediction model.

The support vector regression (SVR) model was established using the regression of continuous data with SVM and the gridregression.py program in the libsvm-2.91 package based on the radial basis function [23].

![Docking poses of (a) mumefural (b) 2-O-feruloyl tartaric acid (c), kainic acid and (d) cAMP in the PDE4D cAMP binding site. The residues for ligand-binding site (blue) and active site (orange), as well as the electrostatic interactions (light blue line), pi–pi interactions (red line) and hydrogen bond interactions (purple dashed line), were illustrated (colour online).](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>pIC$_{50}$</th>
<th>MLR Prediction</th>
<th>Residual</th>
<th>SVM Prediction</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.09</td>
<td>4.36</td>
<td>0.27</td>
<td>4.34</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>4.72</td>
<td>4.71</td>
<td>-0.01</td>
<td>4.97</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>6.57</td>
<td>6.75</td>
<td>0.18</td>
<td>6.82</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>6.06</td>
<td>6.33</td>
<td>0.27</td>
<td>5.81</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>4.72</td>
<td>5.92</td>
<td>1.20</td>
<td>4.91</td>
<td>0.19</td>
</tr>
<tr>
<td>6</td>
<td>4.3</td>
<td>4.24</td>
<td>-0.06</td>
<td>4.55</td>
<td>0.25</td>
</tr>
<tr>
<td>7</td>
<td>4.01</td>
<td>3.69</td>
<td>-0.32</td>
<td>4.26</td>
<td>0.25</td>
</tr>
<tr>
<td>8</td>
<td>5.34</td>
<td>5.58</td>
<td>0.24</td>
<td>5.09</td>
<td>-0.25</td>
</tr>
<tr>
<td>9</td>
<td>4.68</td>
<td>4.98</td>
<td>0.30</td>
<td>4.93</td>
<td>0.25</td>
</tr>
<tr>
<td>10</td>
<td>4.85</td>
<td>4.65</td>
<td>-0.20</td>
<td>4.60</td>
<td>-0.25</td>
</tr>
<tr>
<td>11</td>
<td>5.04</td>
<td>4.97</td>
<td>-0.07</td>
<td>5.28</td>
<td>0.24</td>
</tr>
<tr>
<td>12</td>
<td>5.7</td>
<td>5.32</td>
<td>-0.38</td>
<td>5.93</td>
<td>0.23</td>
</tr>
<tr>
<td>13</td>
<td>6.8</td>
<td>6.85</td>
<td>0.85</td>
<td>6.25</td>
<td>0.25</td>
</tr>
<tr>
<td>14</td>
<td>6.8</td>
<td>6.28</td>
<td>-0.52</td>
<td>6.55</td>
<td>-0.25</td>
</tr>
<tr>
<td>15</td>
<td>7.72</td>
<td>7.10</td>
<td>-0.62</td>
<td>7.47</td>
<td>-0.25</td>
</tr>
<tr>
<td>16</td>
<td>7.68</td>
<td>6.55</td>
<td>-1.13</td>
<td>6.30</td>
<td>-1.38</td>
</tr>
</tbody>
</table>
2.4 MD simulation

The CHARMM force field [20] was applied for the MD simulation using the Simulation package of DS 2.5 [19]. A 7 Å solvation shell was created with TIP3P water and neutralised by the additional sodium cations using the Solvation module in DS 2.5. Two minimisation steps were performed with restrained and flexible proteins in sequence. A maximum of 6000 cycles with Steepest Descent [26] and then with Conjugate Gradient [27] was performed in each minimisation step. The time steps for all MD stages were set to 0.002 ps. The SHAKE algorithm was used to fix all bonds involving hydrogen atoms. The long-range electrostatics throughout the MD simulation was treated by the PME method. In the heating procedure, the system was gradually heated from 51 to 310 K within 50 ps and followed by a 200 ps equilibration phase. In the production procedure, the NVT canonical ensemble was performed with 0.4 ps of temperature coupling decay time for the Berendsen thermal coupling method for 20 ns. The post-processing of the trajectory after MD was analysed using the Analyze Trajectory module in DS 2.5.

3. Results and discussions

3.1 Docking

Table 1 shows the docking results and the predicted activity of top six compounds and cAMP ranked by the binding energy. The scaffold of top six compounds such as mumefural, 2-O-feruloyl tartaric acid, kainic acid, 4-O-caffeoylquinic acid, 4-O-feruloylquinic acid, digallic acid and control cAMP is shown in Figure 1. From the docking pose as shown in Figure 2, the scaffolds of top compounds showed that each compound had at least one carboxyl group that had electrostatic interaction with the two divalent metal cations, Zn$^{2+}$ and Mg$^{2+}$, which mediated the binding to key residues, Asp367 and Asp484. For mumefural, a hydrogen bond (H-bond) with His326...
increased the inhibition potential by blocking the access to this active residue (Figure 2(a)). For 2-O-feruloyl tartaric acid and kainic acid, the H-bonds with Asp484 and other residues in the binding domain further stabilised the binding with PDE4D (Figure 2(b), (c)). For the control cAMP-binding conformation, the key binding residue, Gln535, has an H-bond with cAMP. The two divalent metal cations, Zn$^{2+}$ and Mg$^{2+}$, mediated the binding between cAMP and the other two key binding residues, Asp367 and Asp484, through electrostatic interactions. In addition, the cAMP positioned right by the key active residue, His326, suggesting the compound was ready for hydrolysis (Figure 2(d)). This implied that the docking algorithm was reliable by identifying the actual cAMP-binding conformation. Although all compounds did not interact with the key binding residue, Gln535, the metal ion mediated interactions with the residues Asp367 and Asp484, as well as the interaction with the active residue His326, contributed to the binding stabilities.

3.2 QSAR modelling

GFA was used to select the most representative descriptors to build QSAR models. The selected representative descriptors are Num_RingAssemblies, Jurs_FNSA_1, Jurs_WNSA_1 and Shadow_XY. Each predicted pIC$_{50}$ and prediction residual are listed in Table 2. A training set of 16 compounds with the four aforementioned descriptors was used to establish an MLR model. The MLR model was cross-validated (Table 3) and the modelling formula was

![Figure 5. The docking pose snapshots at the 20-ns MD simulation for PDE4D with (a) mumefural, (b) 2-O-feruloyl tartaric acid, (c) kainic acid and (d) cAMP. Residues for binding site (blue) and active site (orange), as well as electrostatic interactions (cyan line) and hydrogen bond interactions (purple dashed line), were illustrated (colour online).](image_url)
Figure 6. Distance (Å) of hydrogen bonds between PDE4D and (a,b) mumefural, (c) 2-O-feruloyl tartaric acid, (d) kainic acid and (e,f) cAMP.

Figure 7. RMSF (Å) of PDE4D with mumefural, 2-O-feruloyl tartaric acid, kainic acid and cAMP during the 18–20-ns MD simulation for residue numbers (a) 256–570, (b) 315–380, (c) 455–505 and (d) 505–550.
obtained as follows:

\[\text{Predicted } pIC_{50} = -13.4556 + 2.6445 \times \text{Num_RingAssemblies} + 51.0269 \times \text{Jurs_FN}_1 - 0.1611 \times \text{Jurs_WN}_1 + 0.1371 \times \text{Shadow_XY}. \]

Same training set of 16 compounds was also used to establish the SVM model. The squared correlation coefficients \((R^2)\) were 0.78 and 0.89 for the MLR and SVM models, respectively. Figure 3 shows the statistical significance of each model. The predicted \(pIC_{50}\) using MLR and SVM models showed that all compounds except 4-\(O\)-feruloylquinic acid were potent inhibitors (Table 1).

3.3 MD simulation

The MD simulation was performed for further analysis on each protein–ligand interaction. The whole molecule RMSD and ligand RMSD trajectories displayed the atomic fluctuations during the MD simulation (Figure 4). All ligands tended to stabilise after 14 ns of MD. The trend was also observed in the total energy deviation, in which each complex tended to stabilise after 14 ns of MD (Figure 4(c)). An exception was observed on the top one ligand, mumefural, which was stabilised after 17 ns of simulation. Nevertheless, the trajectory changes between the 14 and 17 ns time points could be neglected in terms of binding stability. In addition, the snapshot of each ligand at 20 ns of MD (Figure 5) indicated that the two divalent metal cations, \(Zn^{2+}\) and \(Mg^{2+}\), acted as a bridge for coordinating ligand interactions to Asp367 and Asp484. Consequently, the electrostatic interactions shown in the docking pose of each complex became more stabilised. For all compounds, stabilised H-bonds were observed during the 20-ns MD simulation (Figure 6). In addition to the common metal cation-mediated bonding, mumefural had an additional stable H-bond with His326 during the MD simulation. Similarly, an H-bond with Asp367 was observed, which further stabilise the binding pose (Figure 6(b)). 2-\(O\)-Feruloyl tartaric acid showed H-bonds with Tyr325 and Asn375 during the MD simulation, which indicated the increase in stable position that may interfere the activity of active residue, His326 (Figure 6(c)). Kainic acid had stabilised H-bonds with Asp484 as well as Thr437 during the MD simulation (Figure 6(d)). For cAMP, the H-bonds were stabilised during the MD simulation (Table 4 and Figure 6(e), (f)). In the same way, cAMP gained H-bond interaction with Tyr495 during the MD simulation, suggesting a stabilising docking pose. According to the

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Amino acid</th>
<th>H-bond atom</th>
<th>Maximum distance</th>
<th>Minimum distance</th>
<th>Average distance</th>
<th>H-bond occupancy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mumefural</td>
<td>Ty325:HH</td>
<td>O13</td>
<td>5.42</td>
<td>1.75</td>
<td>3.30</td>
<td>37.06</td>
</tr>
<tr>
<td></td>
<td>Ty325:HH</td>
<td>O17</td>
<td>4.34</td>
<td>1.92</td>
<td>3.30</td>
<td>99.85</td>
</tr>
<tr>
<td>2-O-Feruloyl tartaric</td>
<td>His326:NE2</td>
<td>O27</td>
<td>3.11</td>
<td>1.99</td>
<td>2.20</td>
<td>11.24</td>
</tr>
<tr>
<td>acid</td>
<td>Asp325:OD2</td>
<td>H10</td>
<td>2.91</td>
<td>1.74</td>
<td>2.36</td>
<td>2.68</td>
</tr>
<tr>
<td>Kainic acid</td>
<td>Asp375:HD2</td>
<td>H10</td>
<td>3.72</td>
<td>1.74</td>
<td>2.36</td>
<td>5.02</td>
</tr>
<tr>
<td></td>
<td>Thr437:HG1</td>
<td>O20</td>
<td>3.91</td>
<td>1.74</td>
<td>2.51</td>
<td>37.51</td>
</tr>
<tr>
<td>cAMP</td>
<td>Asp484:OD2</td>
<td>H15</td>
<td>3.20</td>
<td>1.68</td>
<td>2.28</td>
<td>25.76</td>
</tr>
<tr>
<td></td>
<td>Asp484:OD2</td>
<td>H16</td>
<td>3.80</td>
<td>1.68</td>
<td>2.66</td>
<td>34.17</td>
</tr>
<tr>
<td></td>
<td>Thr495:OH</td>
<td>H29</td>
<td>5.67</td>
<td>1.68</td>
<td>3.81</td>
<td>51.20</td>
</tr>
<tr>
<td></td>
<td>Gln535:OE1</td>
<td>H30</td>
<td>4.54</td>
<td>1.68</td>
<td>2.96</td>
<td>5.20</td>
</tr>
<tr>
<td></td>
<td>Gln535:OE1</td>
<td>H31</td>
<td>4.54</td>
<td>1.68</td>
<td>2.96</td>
<td>5.20</td>
</tr>
<tr>
<td></td>
<td>Gln535:OE1</td>
<td>H32</td>
<td>4.54</td>
<td>1.68</td>
<td>2.96</td>
<td>5.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H33</td>
<td>4.08</td>
<td>1.74</td>
<td>2.51</td>
<td>25.76</td>
</tr>
</tbody>
</table>

Note: H-bond occupancy cutoff is 2.5 Å.
RMSF in 18–20 ns (Figure 7). Asp367, Asp484 and Gln535 were stabilised after binding with the compounds as well as with the cAMP; each had a value of RMSF under 0.2 Å. In addition, three compounds also reacted with His326, in which the value of RMSF was reduced from 0.44 Å (for cAMP) to under 0.2 Å.

4. Conclusion

Nowadays, molecular simulation is widely used in material science and drug design [28–44]. We applied this technology in this study. The residues Asp367, Asp484 and Gln535 were the key binding residues for the cAMP-binding domain, and the residue His326 was the active residue for PDE4D. According to the analysis each of the TCM compounds, a binding pattern was demonstrated that involved with metal ions, Zn$^{2+}$ and Mg$^{2+}$, observed from the docking pose of each TCM compound as well as the corresponding MD simulation. The divalent metal cations were the interaction bridges between compounds and residues, Asp367 and Asp484. The carboxylic groups on each ligand formed stable electrostatic interactions with the divalent metal cations. These stable interactions held the compounds in close approximation to Asp367 and Asp484 and suggested potential PDE4D inhibition. Additionally, all three TCM compounds were bound close to the active residue, His326, for cAMP hydrolysis and consequently interrupted the catalytic process of PDE4D. The inhibition efficacy of TCM compounds was supported by the predicted pIC$_{50}$ of MLR and SVM models. Hence, we suggested these TCM compounds, mumefural, 2-O-feruloyl tartaric acid, and kaonic acid, as potential PDE4D inhibitors.

Acknowledgements

The research was supported by the grants from the National Science Council of Taiwan (NSC 99-2221-E-039-013-), China Medical University (CMU98-TCM, CMU99-TCM, CMU99-S-02) and Asia University (CMU98-ASIA-09). This study was also supported, in part, by Taiwan Department of Health Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004) and Taiwan Department of Health Cancer Research Center of Excellence (DOH100-TD-C-111-005). We were grateful to the National Center of High-performance Computing for computer time and facilities.

References

[38] F. Luan, H.T. Liu, Y. Gao, and X.Y. Zhang, QSAR model to predict the thermal stabilities of second-order nonlinear optical (NLO) chromophore molecules, Mol. Simul. 35 (2009), pp. 248–257.

[41] M.L. Mihajlovic and P.M. Mitrasinovic, Applications of the ArgusLab4/AScore protocol in the structure-based binding affinity prediction of various inhibitors of group-1 and group-2 influenza virus neuraminidases (NAs), Mol. Simul. 35 (2009), pp. 311–324.

