P409
Genetic Polymorphisms of DNA Double Strand Break Gene Ku70 and Gastric Cancer in Taiwan
Meng-Hsuan Leo1, Fang-Jing Li1, Mei-Due Yang1, Meng-Chun Lu1, Hwei-Chung Wang1, Wen-Shin Chang1, Chia-Wen Tsai1, Chih-Hsueh Lin1, Cheng-Chieh Lin1, Da-Tian Bau1,4
1Terry Fox Cancer Research Lab, China Medical University & Hospital

The DNA repair gene Ku70, an important member of non-homologous end-joining repair system, is thought to play an important role in the repairing of DNA double-strand breaks. It is known that defects in double-strand break repair capacity lead to irreversible genomic instability. However, the polymorphic variants of Ku70 have never been reported about their association with gastric cancer susceptibility. In this hospital-based case-control study, the associations of Ku70 promoter T-991C (rs5751129), promoter G-57C (rs2267437), promoter A-31G (rs132770), and intron 3 (rs132774) polymorphisms with gastric cancer risk in a Taiwanese population were investigated. In total, 136 patients with gastric cancer and 560 age-and gender-matched healthy controls recruited from the China Medical Hospital in Taiwan were genotyped. As for Ku70 promoter T-991C, the ORs after adjusted by age and gender of the people carrying TC and CC genotypes were 2.41 (95% CI=1.53-3.88) and 3.21 (95% CI=0.96-9.41) respectively, compared to those carrying TT wild-type genotype. The P for trend was significant (P<0.0001). In the dominant model (TC versus TT), the association between Ku70 promoter T-991C polymorphism and the risk for gastric cancer was also significant (adjusted OR=2.48, 95% CI=1.74-3.92). When stratified by age and gender, the association was restricted to those at the age of 55 or older of age (TC vs TT: adjusted OR=2.52, 95% CI=1.37-4.68, P=0.0139) and male (TC vs TT: adjusted OR=2.58, 95% CI=1.33-4.47, P=0.0085). As for the other three polymorphisms, there was no difference between both groups in the distributions of their genotype frequencies. In conclusion, the Ku70 promoter C-57G (rs2267437), promoter A-31G (rs132770) or intron 3 (rs132774), is associated with gastric cancer susceptibility. This polymorphism may be a novel useful marker for gastric carcinogenesis.

P410
Synergistic Cytotoxic Effects of Arsenic Trioxide plus Dithiothreitol on Mice Oral Cancer Cells
Chia-Wen Tsai1, Wen-Shin Chang1, Chen-Hsien Su1, Chih-Hsueh Lin1, Chin-Mu Hsu1, Song-Shei Lin1, Cheng-Nan Wu1, Fang-Jing Li1, Ming-Hsuei Tsai1, Da-Tian Bau1,4
1Terry Fox Cancer Research Lab, China Medical University & Hospital

The anti-tumor properties of arsenic trioxide have attracted extensively attention after its successful inducing apoptosis of acute promyelocytic leukemia cells. However, the therapeutic spectrum should not only be restricted to acute promyelocytic leukemia, but should also extend to other tumor cells. In this study, we aimed at investigating its potential application to clinical therapeutics in oral cancer. In this preclinical animal test, primarily cultured cells from the tumor sites and normal sites of a two-drug 200 μg/ml 4-nitroquinoline 1-oxide (4NQO) plus 500 μg/ml arecoline-induced oral cancer C57BL/6J Nrd1 mice model were examined of their viabilities after the treatments of arsenic trioxide with/without other drugs. In this model, the mice were treated with 4NQO plus arecoline (NA) in their drinking water for eight weeks (8-w), and then removed the drugs for another 10 or 20 weeks (18-w and 28-w, respectively). The results showed that although 2 μM of arsenic trioxide 24-h treatment can suppress the viabilities of cells primarily cultured from the tumor sites of 8-w, 18-w, and 28-w NA-treated mice to 72.9%, 71.5% and 65.6%, respectively, it could also suppress the viabilities of cells from the sham-treated mice of 8-w, 18-w, and 28-w to 76.8%, 73.4% and 75.7%, respectively. The co-cytotoxicity of dithiothreitol and arsenic trioxide on primarily cultured cells from oral cancer mice should be confirmed in human oral cancer cell lines before its application in clinical therapy, and the detailed mechanism is worth further investigation.